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Abstract

Computer vision algorithms, such as Structure from Motion, Simultaneous
Localization and Mapping, and Multi-View Stereo, generate three-dimensio-
nal scenes for a wide range of applications in industry and entertainment
(e.g., robot navigation, self-driving cars, and virtual reality). Although a
significant amount of research has been devoted to maximum likelihood es-
timates of scene parameters, advanced statistical inputs are not typically
incorporated, even though they have the potential to improve the speed,
accuracy, and robustness of 3D reconstruction. This thesis aims to provide
a comprehensive guide on modeling and utilizing uncertainty in Structure
from Motion. Specifically, the thesis focuses on describing the uncertainty of
image keypoints and affine regions, i.e., the estimate of the detector uncer-
tainty. We present a new approach for better modeling the keypoints’ covari-
ance matrices and the positional uncertainty of the affine regions. Next, the
uncertainties of feature point transformations are estimated using a large-
scale dataset of homographies. This allows us to create the first estimate of
the orientation and scale uncertainty of detected regions by the SIFT detec-
tor. The thesis presents a new general scheme for propagating uncertainty
in minimal camera geometry estimation problems, along with a library of
related functions. The challenges of uncertainty propagation through the
projection function are addressed and overcome using two developed meth-
ods. Finally, the thesis applies uncertainty propagation to minimal prob-
lems, demonstrating the speedup of the robust model estimator. Moreover,
a new accuracy-based criterion for camera model selection is presented and
tested, along with an extension that benefits from multiple reprojection er-
ror thresholds. Selecting of an appropriate camera model results in a more
accurate and faster reconstruction. In summary, the thesis is the guide to
modeling, propagating, and utilizing uncertainty in Structure from Motion.
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Abstrakt

Algoritmy poč́ıtačového viděńı, jako jsou Structure from Motion, Simultaneous
Localization and Mapping a Multi-View Stereo, se použ́ıvaj́ı k vytvářeńı tro-
jrozměrných scén pro širokou škálu aplikaćı v pr̊umyslu a zábavě (např. nav-
igaci robot̊u, autonomńı vozidla a virtuálńı realitu). V minulosti bylo věnováno
odhad̊um parametr̊u 3D rekonstrukce významné úsiĺı, nicméně zahrnut́ı pokročilej-
š́ıch statistických dat je využito zř́ıdka i přes potenciál zlepšit kvalitu 3D rekon-
strukce. Tato disertačńı práce si klade za ćıl vytvořit komplexńıho pr̊uvodce mode-
lováńım a využit́ı neurčitost́ı v rámci Structure from Motion algoritmů. Konkrétně
se práce zaměřuje na popis neurčitost́ı obrazových bod̊u a afinńıch oblast́ı, tj.
odhad nejistoty detektor̊u. Práce představuje nový př́ıstup pro lepš́ı modelováńı
kovariančńıch matic detekovaných bod̊u a přesněǰśı odhad neurčitosti pozice afinńıch
oblast́ı. Dále jsou neurčitosti transformaćı mezi detekovanými body odhadnuty po-
moćı vytvořeného datasetu homografíı, což umožnilo odvodit prvńı odhad neurčitosti
orientace a měř́ıtka region̊u detekovaných SIFT detektorem. Práce nav́ıc prezen-
tuje nový obecný postup pro propagaci neurčitost́ı v minimálńıch problémech a kni-
hovnu funkćı, které tuto neurčitost propaguj́ı. Propagace neurčitosti prostřednictv́ım
projekčńı funkce je navržena pomoćı dvou nových metod. Na závěr prezentuje
disertačńı práce př́ıklad využit́ı neurčitost́ı při řešeńı minimálńıch problémů, tj.
demonstruje zrychleńı algortimu, který poč́ıtá robustńı odhad řešeńı. Dále je
představeno a testováno nové statistické kritérium pro výběr modelu kamer na
základě jejich neurčitost́ı. Výběr vhodného modelu kamery vede k přesněǰśı a
rychleǰśı rekonstrukci. Disertačńı práce poskytuje návod, jak modelovat, propago-
vat, a využ́ıt neurčitosti v rámci Structure from Motion.
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1 Notation

Abbreviations
AC Accuracy-based Criterion / Affine Correspondence (if clear from context)
ACS Accuracy-based Camera Model Selection
AIC Akaike Information Criterion
ANN Approximate Nearest Neighbors
CDF Cumulative Distribution Function
IC Information Criterion
KL Kullback-Leibler (distance)
LACS Learned Accuracy-based Camera Model Selection
LSM Least Squares Matching
MC Monte Carlo (simulation)
MDL Minimum Description Length
MP Moore-Penrose (inversion)
MVS Multi-View Stereo
PC Point Correspondence
PDF Probability Density Function
RANSAC Random Sample Consensus
SfM Structure from Motion
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SPRT Sequential Probability Ratio Test
SVD Singular Value Decomposition

General variables
Ai i-th affine transformation of neighbourhoods ui → u′i
Ãi i-th reference affine transformation of neighbourhoods ui → u′i
Aui matrix ∈ R2×2 transforming the unit circle to an affine region boundary

(related to the keypoint ui)

Ĉ
(i)

l estimated l-th camera center using camera model Mi

δ reprojection threshold

ε̂(i) estimated reprojection error u− p(i)(θ̂
(i)

) using the camera model Mi

evec,l Euler vector of the l-th camera (a rotation axis multiplied by a rotation
angle)

E essential matrix
Ek identity matrix of the dimension Rk×k

fl focal length of the l-th camera
F fundamental matrix
GS multivariate Gaussian using a matrix (AuiA

>
ui

)/9 as the kernel
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Gx,t 1D differentiation kernel in x direction using standard deviation t
Gy,t 1D differentiation kernel in y direction using standard deviation t
h(i) radial distortion function of the camera model Mi

H homography matrix
Hθ nullspace of the column space J

χ2
N chi-squared distribution of N degrees of freedom

I grayscale image I ∈ Rw×h (using width: w [px], and height: h [px])
Ix,t smooth image gradient in the x direction of an image I, using a standard

deviation t for the differentiation kernel
Iy,t smooth image gradient in the y direction of an image I, using a standard

deviation t for the differentiation kernel

J Jacobian matrix of projection equations estimated in θ̂

K(i) number of parameters in the reconstruction θ̂
(i)

Kl calibration matrix of the l-th camera
L loss function of a reprojection error

L(i) number of cameras P̂
(i)

M set of n camera models M = {M1, . . . ,Mn}
ml,m keypoint in a camera coordinate system ∈ R3, related to P̂ l, and X̂m

M (i) number of 3D points X̂
(i)

Mi i-th camera model
MB|D radial distortion camera model with B polynomial and D division param-

eters
N (µ, Σ) Gaussian distribution (defined by the mean µ and covariance matrix Σ)

N number or keypoints u (N (i) is the number of registered inliers in θ(i) )

Ω(θ̂) weighted squared reprojection error
p(i) projection equation according to the camera model Mi constraints
P l l-th camera composed of {fl,upp,l, evec,l, tl}
Rkj rotation matrix from the camera Pj to Pk, i.e., Rkj = RkR

>
j

R̃kj reference rotation matrix from the camera Pj to Pk, i.e., Rkj = RkR
>
j

Rl rotation matrix of the l-th camera
S set of tuples (l,m) ∈ S, every tuple (l,m) contains indexes of the m-th 3D

point visible in the l-th camera
θ reconstruction defined us {P ,X,θrd}
θ̂

(i)
estimated reconstruction {P̂

(i)
, X̂

(i)
, θ̂

(i)

rd} for the camera model Mi

θrd radial distortion parameters of a reconstruction
tkj translation vector from the camera Pj to Pk, i.e., tkj = Ck −Cj

t̃kj reference translation vector from camera Pj to Pk, i.e., tkj = Ck −Cj

tl translation vector of the l-th camera (tl = −Re(êvec,l)C l)
u vector of all keypoints {u1, . . . ,uN} in an image coordinates
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ui i-th keypoint in an image coordinates, i.e., ui ∈ R2 [px]

ul,m keypoint in an image coordinates, related to P̂ l, and X̂m

û
(i)
l,m estimated projection p(i)(P̂

(i)

l , X̂
(i)

m , θ̂
(i)

rd ) for the camera model Mi

upp,l principal point of the l-th camera
Xm m-th point in 3D

Operators
abs absolute value of an entity (e.g., a scalar, or vector elements)
a2h converts a vector from affine coordinates into homogeneous coordinates
cond condition number
dim dimension of an entity (e.g., set, tuple, list, vector, matrix)
D dispersion operator
eig eigenvalue decomposition
E expectation operator
h2a convert a vector in homogeneous coordinates into affine coordinates
med median of an entity (e.g., a set, tuple, list, vector, matrix)
null nullspace of a matrix (i.e., the nullspace of the column space of a matrix)
qr QR decomposition
Re function converting an Euler vector evec to the rotation matrix ∈ R3×3

rank maximal number of linearly independent columns of a matrix
svd SVD decomposition
tr trace of a matrix
vec reshape an input entity to the vector by the column-wise concatenation
|.| determinant of a matrix
||.||2 Euclidean norm

[v]× skew-symmetric matrix of a vector v ∈ R3 in the form

 0 −v3 v2

v3 0 −v1

−v2 v1 0


()+ MP inversion of a matrix
∗ convolution operator
� Hadamard product (i.e., the element-wise multiplication)

Key concepts section
γ damping term added to a Fisher information matrix
h̄ constraints of a model parameters (e.g., ||vec(H)||2= 1)
H0 zero hypothesis
H̄ derivative of a model parameter constraints h̄
λrd,l first coefficient of a division radial distortion model of the l-th camera
µx mean value of the random variable x
mr (raw or central) moment of the r-th degree
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p(x) probability density function, i.e., dPx(x)/dx
P (ai) probability of an event ai ∈ Se

Σ covariance matrix
Se space of events
Sh̄ matrix fixing the gauge of a covariance matrix using h̄ constraints
x random variable mapping events to real values, i.e., x : Se → R

Uncertainty of measurements section
NNi

number of pixels in an image region described by the matrix Ai
Nu neighbourhood of the keypoint ui
rm redundancy number for the 3D point Xm

rui radius of a circular region related to the keypoint ui
Ruiui redundancy matrix ∈ R2×2 of the keypoint ui
σn standard deviation of a pixel intensities noise (called image noise)
σui standard deviation of the i-th keypoint assuming isotropy (Σuiui = σuiE2)
σui,1 standard deviation of the first coordinate of the keypoint ui,1
σx standard deviation of a scalar x
Σuiui covariance matrix of the keypoint ui
sui i-th keypoint scale
t standard deviation of smoothing and differentiation Gaussian kernel
Wuiui Fisher information matrix ∈ R2×2 of the keypoint ui
ŷ

(i)
l,m normalized estimate of the reprojection error ε̂

(i)
l,m using camera model Mi,

i.e., ŷ(i) ∈ N (0,1)

Measurement transformation uncertainty section
αui angular transformation of the i-th correspondence φ′i − φi
α̃ui reference angular transformation of the i-th correspondence derived from

related reference homography matrix H̃

δcond condition number threshold
∆αi difference between a measured and the reference angular transformation

α̃i − αi
∆rui ratio of the scale ratios rui/r̃ui
εui symmetric positional residual of the i-th correspondence with respect to

the ground truth transformation derived from related homography matrix
H̃

nl l-th plane normal in the world coordinate system ∈ R3

φi, φ
′
i orientation angle of the i-th correspondence, i.e., the feature points in an

image pair
pi3, pi4 scalar values that realize sheer transformations derived from the affine

transformation Ai
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rui scale ratio of the i-th correspondence scales s′i/si
r̃ui reference scale ratio of the i-th correspondence scales derived from the

matrix Ãi
si, s

′
i scale of the i-th correspondence, i.e., the feature points in an image pair

Uncertainty in SfM
εΣPl

relative error of the l-th camera covariance matrix w.r.t. QPP

QPP mean absolute magnitude of camera parameters

Applications of the uncertainty modelling

JA Jacobian matrix of a common set of parameters θA (θ = {θA, θ(i)
B })

JB Jacobian matrix of a set of parameters θ
(i)
B (θ = {θA, θ(i)

B })
S(i) S-transformation fixing the gauge of a information matrix so that a common

set of parameters θA is independent of the rest of the parameters
T1 run time of the fastest sub-reconstruction that registered L cameras
Td maximal time limit to register L cameras
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2 Introduction

The digitization of the physical world has garnered significant attention due to its
wide range of applications, such as quality verification of industrial products [1],
robot navigation [2], localization [3], self-driving cars [4], virtual reality [5] and
more [6, 7]. As a result, achieving accurate and robust three-dimensional scene
reconstruction is an important objective for many computer vision algorithms,
including Structure from Motion (SfM) [8], Simultaneous Localization and Map-
ping (SLAM) [9], and Multi-View Stereo (MVS) [10]. Recent advancements in
this field have shown the potential for reconstructing geometry from vast photo
collections [11, 12]. Using a single computer, we can create 3D models of entire
cities from pictures taken by consumer cameras. These models can be composed
of millions of 3D points and constructed from as many as hundreds of thousands
of photos [8, 10].

What is a reconstruction?
A digital representation of a real-world environment is referred to as a 3D recon-
struction. It is usually the output of the sparse reconstruction process, explicitly
the SfM or SLAM, which produces a collection of camera intrinsics (such as the
focal length and radial distortion coefficients), camera poses (representing the po-
sition and orientation of the camera), and the coordinates of 3D points.

What to analyse in a reconstruction?
Estimating the 3D reconstruction involves detecting unique points in images loaded
with a positional noise. The primary objective of this thesis is to determine how
the uncertainty of detected image points (i.e., the input uncertainty) impacts the
quality of the estimated reconstruction (i.e., the output uncertainty) and uncover
the underlying relationships between reconstruction parameters (such as the focal
length and the camera rotation). These characteristics, i.e., relationships and ac-
curacy, can be described by the first few moments of the reconstruction. While
SfM and MVS calculate the first moment (i.e., the Maximum Likelihood (ML)
estimate of the reconstruction) in most of the reconstruction pipelines [8, 13, 14],
this thesis focuses on the second moment (i.e., the covariance matrix) of the 3D
reconstruction, which is rarely studied. We present practical methods for esti-
mating, propagating, and utilizing the uncertainty in the scope of the algorithms
employed in SfM.

Why to analyse a reconstruction?
The iterative nature of sparse reconstruction methods (SfM, SLAM) means that
early-stage errors can significantly impact the final 3D reconstruction. By under-
standing the hidden relationships between scene parameters and their dependence

12
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Figure 1: The propagation of the second moment (the covariance matrix) of the
keypoints (a) to the second moment of the camera poses (b). The red ellipsoids
visualize where are the camera centers likely to be, i.e., the standard ellipsoids of
covariance matrices of camera centers. Blue dots correspond to the reconstructed
3D points.

on the uncertainty of input observations, we can improve a number of computer
vision tasks, such as selecting the best camera model [15]1, weighting or filtering
the most unconstrained parameters (e.g., 3D points), planning recording trajec-
tories [16], and speeding up the reconstruction process [17]. The knowledge of
the uncertainty can help us check iteratively added cameras and prevent incorrect
extensions of partial reconstructions, leading to faster and more robust recon-
struction pipelines. Additionally, estimating 3D points uncertainty allows more
sophisticated smoothing of reconstructed surfaces in dense reconstructions [18,19].
Moreover, accurate relative pose estimates can improve the selection of the first
reconstruction pair in sequential SfM. The thesis presents two applications in de-
tail.

1The publications of the author of this thesis are highlighted in bold letters for easy distinction
from other citations.
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3 State of the Art

To investigate the properties of a reconstruction, it is essential to understand the
reconstruction process. The mathematical models describing the relationship be-
tween different scene parameters (e.g., relative and absolute pose constraints, and
projection functions) significantly impact the distribution of inaccuracies within
the final 3D model.

One way to analyze the reconstruction process is to propagate the uncertainty
from observations to the relative pose parameters, such as the essential or fun-
damental matrix. Alternatively, it’s possible to focus on the accuracy of the re-
construction itself by utilizing the relationships described by projection equations.
Both approaches are discussed in detail in this thesis.

This section provides a brief overview of the reconstruction process and sum-
marizes its advantages and drawbacks. We also discuss the information available
at the input of standard reconstruction pipelines and the main algorithms used
to propagate the input uncertainty into various reconstruction parameters, such
as the essential or fundamental matrices and camera poses. Finally, we investi-
gate statistical methods for suitable mathematical model estimation from input
observations.

3.1 The reconstruction process

There are two main approaches how to reconstruct a scene. The global ones
(e.g. [20, 21]) and the iterative ones (e.g. [8, 22]). This work focuses on the SfM
approach, which can be viewed as a generalization of SLAM, i.e., an unordered
set of images is assumed, and the pose of the first camera is not fixed. The
SfM can be categorized as an iterative method that repeatedly extends a partial
reconstruction.

The reconstruction process typically begins with detecting feature points in
input images. Feature points can be detected using handcrafted techniques, such
as SIFT [23], SURF [24], and MESR [25], or using trained detectors, such as
SuperPoint [26], D2-Net [27], and R2D2 [28]. In addition to detecting feature
points, the detectors typically also describe the local neighborhood around each
detected point using a unique feature vector (descriptor), e.g., [23,24]. Once feature
points have been detected and described, tentative matches between them are
established based on an Approximate Nearest Neighbors (ANN) search [29–32].
The similarity between feature points is typically computed as the dot product of
their descriptors.

The relationship between correspondences and scene parameters is based on
projective geometry [33]. The relative pose solver verifies tentative matches using
an assumed camera model. For example, if the camera calibration is known (i.e.,

14



the intrinsic parameters), we can employ the essential matrix solver developed by
Nister [34]. Epipolar geometry constraints (for cameras with unknown intrinsic
parameters) between tentative correspondences allow for estimating both cam-
eras’ relative pose and focal lengths. Moreover, we can assume even more general
constraints for tentative matches and calculate the radial distortion parameters as
in Kukelova [35]. The camera model constraints, the number of correspondences
fitted by the estimated geometrical model, and keypoints uncertainty influence
the uncertainty of the estimated model. Assuming one set of calculated param-
eters (e.g., essential matrix) for a selected camera model, correspondences with
a smaller error than a specified threshold are called inliers. The error can be
algebraic, geometrical, weighted by a loss function, or weighted by the accuracy
of the measurements. The minimal solution to the camera geometry estimation
problem is usually estimated by an extension of RANSAC [36]. Recently, trainable
approaches for selecting inliers (e.g., SuperGlue [37]) have been published. Fur-
thermore, some algorithms (e.g., SparseNCNet [38] or Patch2Pix [39]) combine all
the previous steps of relative pose estimation into a single trainable network.

After verifying tentative correspondences in the relative pose estimation step,
the SfM algorithm selects an initial pair of cameras and establishes the global
coordinate system. Typically, this selection is made heuristically based on the
number of correspondences and the viewing angle between camera pairs as done
by Schoenberger [8]. The iterative part of the algorithm begins by triangulating 3D
points from the verified feature points in the first camera pair. Next, a new camera
is added to the partial reconstruction by solving the absolute pose problem, which
involves computing the extrinsic camera parameters (i.e., orientation and position)
given the input 2D - 3D correspondences [40, 41]. There are many absolute pose
solvers available that can also estimate some of the intrinsic camera parameters,
such as the focal length studied in Kukelova [42], principal point published in
Larsson [43], or radial distortion [44, 45]. The algorithm iterates between adding
new cameras and triangulating new 3D points until all images have been registered
or no more correspondences can be utilized.

The above-described process registers images extending the first camera pair,
leaving out cameras without enough feature points visible from other views. The
estimated camera poses and 3D points are typically refined through an efficient
nonlinear optimization after a few iterations (of adding new cameras), using a
method called Bundle Adjustment (BA) [46]. The optimization is often performed
using the Ceres nonlinear least squares solver [47]. The BA minimizes the dis-
tance between the feature points and the bundles of rays emanating from the 3D
points, creating projections in the images [33]. It is common to run BA at the end
of the reconstruction pipeline and optimize the 3D model repeatedly during the
reconstruction process.
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3.2 Properties of the reconstruction process

Current reconstruction pipelines usually utilize SfM algorithms, which can han-
dle an unordered set of input images [8, 13, 14, 22, 48]. This approach benefits
from the large number of improvements that have been made over the past few
decades. There are numerous advancements in the robust model estimation tech-
nique, as well as relative and absolute pose solvers for different parameters, such
as radial distortion, tangential distortion, focal length, or rolling shutter. Addi-
tionally, multiple implementations of each solver exist based on different geometric
relationships, such as angles between rays, distances between 3D points, ratios of
distances between 3D points, and others.

One of the main drawbacks of the iterative SfM approach is that it can lead to a
local optimum, which is particularly evident in the ”loop closing” problem [49,50].
In this problem, a loop of tens or more cameras often ends in a different position
than where it started. Current reconstruction pipelines [8, 13, 14] optimize the
reconstruction whenever few cameras are registered to partial reconstruction to
decrease accumulated camera drift. However, such an approach slows down the
reconstruction process [20,21] and works only partially.

Figure 2: This figure visualizes sparse reconstruction created from images like the
one on the left subfigure. The images were recorded on a trajectory following
a loop, shown in the right subfigure. Yet the result of SfM (middle subfigure)
leads to a loop closure problem because of accumulated drift. This figure is from
Wilson [51].

3.3 The statistics of a reconstruction

The reconstruction process begins with the detection of feature points. While
many algorithms focusing on this task have been published and extensively com-
pared [52], only a few studies have evaluated the uncertainty of observations. This
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subsection provides an overview of the main approaches used to describe the un-
certainty of the keypoints (i.e., the coordinates of centers of detected regions in the
images). The subsequent subsections discuss methods for propagating the uncer-
tainty from measurements to estimated parameters and techniques that focus on
the propagation of uncertainty in the context of SfM. Lastly, this section discusses
uncertainty utilization to improve the robustness and accuracy of the reconstruc-
tion.

Uncertainty of the observations. We can illustrate the basic properties of
feature point detectors with a simple example of applying the corner detector,
such as the Harris operator [53], on an image of a desk (see Fig. 3). Does the
Harris operator detect the corner of the desk? → No, it cannot. The reason is

(a) Original image (b) Detail of detected corner

Figure 3: The feature points detected by Harris operator [53] on a image of a desk.

that detectors work on top of 2D images rather than 3D space. These detectors
select unique patches, such as corners or blobs in 2D, and only approximate the
projections of unique points in 3D as shown by Kanatani [54]. The detection de-
pends on various factors such as material properties, environmental conditions,
camera parameters, and image noise. Moreover, as each keypoint is unique, no
positional covariance matrix can be measured by standard statistical approaches.
The detection operator always leads to the same feature points in a single image,
making it impossible to measure their variance directly. The uncertainty of de-
tected keypoints can be estimated by uncertainty analysis of template matching of
image intensities. Assuming an ideal camera with a linear transfer function, image
noise variance increases linearly with pixel intensity [55,56]. In practice, estimating
the variance function for each keypoint coordinate is complex due to the internal
camera processing. As far as we know, no publications discuss the uncertainty
of the remaining parameters of the feature points, e.g., the scale and orientation
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(a) (b) (c)

Figure 4: Visualization of the standard ellipsoids for Gaussian models of keypoints
noise: (a) isotropic homogeneous, (b) isotropic inhomogeneous, (c) anisotropic
inhomogeneous

of SIFT detector. The estimate by Monte Carlo (MC) simulation would require
multiple samples with different lighting, reflection, contrast, etc., for all camera
poses, which cannot be achieved in practice.

Most of the authors and reconstruction pipelines [8,22,52,57] assume isotropic
homogeneous noise model of keypoints, Fig. 4a. This model assumes the same
uncertainty for all keypoints. The isotropic inhomogeneous noise model visualized
in Fig. 4b can be described by covariance matrices composed of a unit matrix
scaled by variances of individual keypoints [16, 58, 59]. Many authors estimate
these variances from a reprojection error depending on the selected camera model,
as noted in Kanatani [54]. Unfortunately, the uncertainty of the keypoint does not
depend on the camera model but on lighting, contrast, viewing angle, etc.. This
approach is correct only if the camera intrinsics are known in advance. The exper-
imental evaluation conducted by Förstner [60] shows that the standard deviation
of the Lowe detector lies, in the case of the known camera model, in the order of
the rounding error, i.e., ≈ 1/3 pixels. The authors [60] also derived an empirical
formula for the standard deviation of the SIFT [61] detector based on the scale
level in the image scale space pyramid. Images at a higher scale space level can be
seen as blurred. Therefore, the standard deviation is higher. Lastly, several meth-
ods have been proposed [62–65] to estimate the covariance matrix from grayscale
images. It can be splited into residual-based approaches [62,63] and the derivative-
based approaches [64,65]. Higher-order estimates of uncertainties of feature points
are difficult or impossible to estimate. We discuss the keypoint covariance matrix
estimation and the extension of related state-of-the-art methods in Sec. 6.
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The uncertainty of the measurements transformation. Traditionally, ge-
ometric relations are estimated from keypoint correspondences between the two
images [33,66], ignoring that correspondences are often rather established between
image regions.

Having the ground truth transformation (e.g., a homography matrix), we can
decompose it and evaluate the uncertainty of the transformation of individual ele-
ments of feature points (e.g., the keypoint shift, scale coefficient, or change of the
orientation). Such an approach approximates the MC simulation for individual
feature point transformations by calculating the average variance from all the fea-
ture point transformations. As an example, the transformation of keypoints (i.e.,
their shift) is evaluated (using the classical statistic methods, i.e., calculating the
variance of the reprojection error) in most of the papers about minimal solvers,
e.g., [43,44,67]. The first uncertainty evaluation of other feature point parameters
in [68] contains an estimation of the scale and orientation transformation uncer-
tainty for OpenCV implementation of SIFT detector. The main results from [68]
are shown in Sec. 7.

Suppose the ground truth transformation between measurements is unavail-
able. In that case, we can use the known uncertainty of the inputs (e.g., the
approximated image noise) and ML estimator utilizing these inputs to estimate
the transformation parameters (e.g., using the template matching of affine regions
to estimate the affinity transformation). As a maximum likelihood estimator, the
least squares matching (LSM) provides the covariance matrix of the estimated
parameters. The LSM method is, for example, used for refining affine correspon-
dences [69–71] reaching standard deviations for parallaxes down to below 1/100
pixel as shown in Haralick [72]. Intensity-based refinement for pose estimation has
been used in papers [73,74].

The uncertainty propagation. The standard approach for propagating uncer-
tainty from measurements to model parameters using selected constraints can be
categorized according to several criteria. For instance, the propagation can be for-
ward or backward, and the system can be linear or nonlinear, over-parameterized
or not. Various works have described these different schemes, including [33,60,75].
The uncertainty associated with homography estimation from four or more points
can be estimated using methods such as SVD [66, 76] and Lie groups [77]. The
uncertainty of an estimated fundamental matrix has been computed using the
SVD method presented in Sur [78], as well as the minimal representations ap-
proach introduced by Csurka [79]. Similarly, the uncertainty of the essential ma-
trix has been evaluated using a minimal representation method, as demonstrated
in work by Förstner [60]. There were also published several specific extensions
for computing the uncertainty of various setups, such as lines, proposed by Bal-
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asubramanian [80]; edges, studied by Belhaoua [16]; laser scans, investigated in
studies by Höhle [81] and Schaer [82]; and stereo setups, explored in studies by
Rivera-Rios [59] and Park [83]. However, these authors typically rely on heuris-
tics to approximate covariances instead of following the uncertainty propagation
method. To our knowledge, the uncertainty analysis for affine transformations
was first published in Barath [84]. We introduced there a general scheme for un-
certainty propagation in minimal problems, where the constraints are in implicit
form extended about constraints on model parameters. Additionally, we provide
a practical guide for making affine correspondences work well in camera geome-
try computation. The uncertainty propagation for minimal problems is further
discussed in Sec. 8.1.

The effect of employing covariance matrices in the statistically optimal estima-
tion of the Homography and Fundamental matrix was evaluated in Kanazawa [85].
The authors concluded that employing accuracy for relative pose calculation im-
proved the results, but the effect was negligible for Harris [53] and SUSAN [86]
detectors. However, several hyperparameters, such as the size of the differenti-
ation and smoothing kernel, are missing in the experimental evaluation of this
publication. Therefore, we could not replicate provided experiments. Conversely,
recent papers have highlighted the importance of accurate localization of feature
points [26–28, 38, 61] and their influence on reconstruction accuracy, as shown in
Lindenberger [87], and localization, as studied in Zhou [88].

The uncertainty of a reconstruction. Propagating the uncertainties of in-
put measurements to the reconstruction parameters, such as camera poses and
3D point positions, is challenging. The relationship between 3D points and their
projections is described by a suitable projection function, such as those discussed
in [33, 43, 44]. The nonlinear projection function is usually simplified by its first-
order approximation using its Jacobian matrix [33,89], and the uncertainty is prop-
agated in a backward manner from the measurements to the parameters using a
nonlinear over-parameterized system of equations defined by appropriate projec-
tion functions. However, the projection equations are typically over-parameterized
and do not fully constrain the 3D scene, as mentioned by Morris [90]. This means
that the reconstruction can be shifted, rotated, and scaled without changing the
image projections.

Hartley [33] suggested a three-step approach for propagating uncertainty in an
over-parameterized system: 1) mapping the parameter space to the set of essen-
tial parameters, 2) computing the inverse of the information matrix of the essential
parameters, and 3) mapping the inverse information matrix back to the original
parameter space. However, this approach becomes challenging for large-scale re-
construction, where finding the essential parameters is difficult. As a result, this
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approach is often only applicable to minimal solvers, as the one in Förstner [60],
rather than the reconstruction itself.

Kanatani [75] describes the uncertainties in the context of changing regularisa-
tion conditions, called gauge transformations. The uncertainty of a parameter is
infinite if it can be adjusted freely without changing the reprojection error. There-
fore, we are primarily interested in estimating inner geometry (e.g., angles and
ratios of distance) and its inner precision, defined in Förstner [60]. Inner precision
is invariant to gauge changes. A natural choice of the fixation of gauge, which leads
to the uncertainty of inner geometry, is to fix seven degrees of freedom caused by
the invariance of the projection function [33,60,75].

There are many different choices of regularisation conditions. For example,
SLAM [9] assumes a fixed camera pose and fixed scale of the first image pair base-
line, which makes the Fisher information matrix full rank. In the case of SLAM,
fast Cholesky decomposition can be used to invert a Schur complement matrix, as
well as other techniques for fast covariance matrix computation [91,92]. Some pa-
pers, such as from Ila [93] or Polok [94], claim to address uncertainty computation
in SfM. Nevertheless, they assume a full-rank Fisher information matrix and do
not deal with gauge of estimated covariance matrix.

The gauge-free approach and the normal form of the covariance matrix were
introduced by Kanatani [75]. One way to estimate it is to use the Moore-Penrose
(MP) inversion of the Fisher information matrix, as studied by Förstner [60]. The
pseudoinverse A+ of A is equal to the inverse of A on the range of A, and sends
the orthogonal complement of the range of A to the zero vector, as described in
Ben [95]. Note that the residual vector is perpendicular to the range of A, and
thus the pseudoinverse minimizes the sum of the squared Mahalanobis distances
of the residuals to the zero vector.

Lhuillier proposed a method to speed up the MP inversion of the information
matrix for SfM frameworks by decomposing the information matrix and computing
the MP pseudoinverse of the Schur complement of the submatrix of 3D point
parameters. This submatrix has the same size as the block of camera parameters
and is much smaller than entire information matrix. The decomposition was also
extended in Polok [94]. However, this decomposition does not satisfy the rank
additivity condition defined in Tian [96]. Lhuillier provided proof of the existence
of a correction term that allows the use of this decomposition in his work [58].
However, there is no connection between the proof and the correction term actually
used.

The papers [97–99] address the aforementioned challenges. Two main ap-
proaches are elaborated in this thesis. The first approach [98] involves adding a
damping term to the information matrix. Next, the Taylor expansion is used to
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estimate the inversion of the information matrix at a point where the damping
term equals zero. This strategy leads to an iterative scheme for estimating the
uncertainty of the reconstruction. The second approach [99], involves extending
the information matrix about the nullspace of the Jacobian of the projection equa-
tions. This approach offers a faster and more robust one-step solution estimating
the covariance matrix. Further details are in Sec. 8.2.

The reconstruction statistics utilization can be done in many ways, and we
will highlight two approaches: The first approach is to use the uncertainty of the
estimated model to improve relative pose estimation. This is demonstrated in
Barath [84]. The authors used uncertainty propagation for the early rejection of
degenerated models. The second approach employs uncertainty to compare the
quality of several reconstructions built from the same images but using different
camera models. This is shown in [15]. The authors utilized the estimated covari-
ance matrix to compare several reconstructions with the goal of identifying which
camera model leads to the most accurate and reliable reconstruction.

The related work to the first application is the following. The uncertainty of
relative pose estimation assumes the input to be either keypoints [24,26–28,61] or
affine correspondences [100–103]. We derived the uncertainty for several geomet-
rical problems and found that the estimated uncertainty is related to the number
of inliers found during the model verification. Therefore, we could employ the
probability of having a suitable relative pose model in the SPRT [104], leading to
faster convergence. Related work to uncertainty propagation using an essential set
of parameters of the relative pose transformation is mentioned above and stud-
ied in [60, 77, 79]. However, we utilized a new scheme simplifying the uncertainty
propagation derivation leading to the same results.

The related work to the second application is the following. SfM pipelines use
many hyperparameters that are hard to set in practice. Generally, the model selec-
tion based on various statistics and criteria is a well-studied problem that received
considerable attention [54,105–114]. The Akaike criterion (AIC [105]) is based on
the first-order estimate of the Kullback-Leibler (KL) distance between the densities
given by the data and true (unknown) density function. AIC computes the likeli-
hood of the fitted model parameters and its bias correction. Hurvich’s AICc [106]
is a second-order estimate of the KL distance, which can be seen as an extension
of AIC for small sample sizes. Takeuchi’s TIC [115] is another extension of AIC,
which shrinks the model parameters towards the maximum entropy distribution
and therefore is more robust if the correct model is not in the set of candidates
models. Bozdogan’s CAIC [107] adjusts AIC by the assumption that the order of
the models does not change if the sample size increases. Schwarz’s BIC [108] is
motivated by approximating the marginal probability density of the data under the
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model, which leads to a higher magnitude of bias correction w.r.t. AIC. Rissanen’s
MDL [110] is derived from the minimal code length necessary for describing the
data. A valuable extension of the AIC, MDL up to geometric G-AIC, G-MDL was
introduced by Kanatani in [54]. It highlights that the accuracy depends primarily
on the physical properties of the observed 3D structure. All the approaches above
do assume observations without outliers. The simplest robust IC is Ronchetti’s
RAIC [112]. It generalizes the ML-estimator to an M-estimator, which minimizes
a robust loss function of the residuals. This idea can be applied to ICs mentioned
above, as in, e.g., RBIC [113] and RTIC [114]. Watanabe’s WAIC and WBIC [116]
assume known priors on the model parameters. However, the camera model se-
lection in SfM by standard Information Criterion (IC) does not work for several
reasons. First, the reconstruction has a singular statistical model due to the gauge
freedom, i.e., the likelihood function of having a “good” model cannot be derived
using the normal distribution, as studied in Watanabe [116]. Secondly, the prior
distribution of the reconstruction parameters (e.g., camera poses and 3D points) is
unknown. Thus, the Bayesian methods cannot be used either. Third, for different
camera models and different reprojection thresholds, the final 3D reconstruction
contains different numbers of registered 3D points and cameras, i.e., the size of the
data is not constant. Finally, standard ICs assume that residuals depend only on
the selected model, which is not the case of reprojection error that also depends on
physical properties (e.g., lighting and view angle). The most related work is done
by Kanatani [54], who derived the G-AIC and G-MDL information criteria. These
criteria were applied in Kinoshita [117] to choose between affine and projective
camera models. However, G-AIC and G-MDL methods do not work well for the
camera model selection task because this task has a singular statistical model as
described in Watanabe [116]. Another approach to radial distortion model selec-
tion was presented in [118,119]. That approach assumes correspondences between
planar calibration boards with a fixed number of detected observations without
considering any outliers and simplifies used camera models to homographies be-
tween pairs of images.
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4 Contribution of the Thesis

Modern SfM pipelines [10, 22] and recent minimal solvers [33, 34, 74, 120–122] as-
sume the isotropic homogeneous noise of the observations, treating feature points
indistinguishably. Utilizing uncertainties can improve the accuracy of estimated
parameters and avoid unnecessary computations, such as the verification of de-
generated solutions of minimal problems and extending reconstructions about in-
accurate cameras. This thesis provides a comprehensive review of state-of-the-art
literature and methods for working with uncertainties in SfM. We begin with fea-
ture point uncertainty estimation, followed by uncertainty propagation to algebraic
solutions of minimal problems and sparse reconstructions. Finally, we present two
applications that benefit from estimated uncertainty. This work is the guideline for
working with uncertainty in SfM. In particular, our contributions are the following:

1. The thesis summarizes the key concepts of uncertainty modeling, un-
certainty propagation, gauges, information criteria, camera models, the re-
lationship between cameras, and optimization of the reconstruction. This is
an important background that allows readers to understand the utilization
of uncertainty in SfM.

2. The thesis unifies theory about modelling the keypoints noise, sum-
marizes the state-of-the-art approaches, and presents the first visual
comparison of their results.

3. We present a new extension of the keypoint noise modeling that allows us
to improve the estimate of a covariance matrix for keypoints.

4. We present a new generalization of keypoint uncertainty modeling that
allows us to estimate the accuracy of affine region position.

5. The thesis presents how to estimate the uncertainty of feature point
transformations between images derived from a large-scale dataset of
homographies [68]. We extend this publication to include the first esti-
mate of the SIFT scale and orientation uncertainty.

6. Next, we propose a generalized approach for the propagation of
uncertainty for minimal problems. It simplifies the derivation of the
uncertainty propagation for individual minimal problems by employing the
constraints between parameters. The theory was published in [17]. This the-
sis extends the publication by creating a software of uncertainty prop-
agation functions for several minimal solvers and verifying their ro-
bustness at https://github.com/michalpolic/pose_uncertatinty_lib.
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7. We present two approaches for the uncertainty propagation from key-
points to reconstructions. The Taylor expansion algorithm was presented
in the paper [98], and the following Nullspace bounding method in [99]. The
thesis summarizes the most relevant results from these papers. The Taylor
expansion algorithm is the first approach that allows expressing the uncer-
tainty of the inner geometry of a large-scale reconstruction correctly, while
the Nullspace bounding method has superior robustness and faster execution
time.

8. The thesis presents an application of uncertainty estimates in minimal
problems as an initialization for the SPRT test. We empirically found
that the distribution of the high-inlier ratio, defined as the ratio of found
inliers to the maximal number of inliers for the calculated model, depends
on the model uncertainty. Using this dependency, we initialize the SPRT
test with the probability of having a high-inlier ratio model estimated. It
speeds up the computationally extensive verification step of the robust model
estimator. The results were published in [17].

9. The last contribution shows the benefits of the uncertainty propagation to
the reconstruction. We present the first accuracy-based criterion that
works on automatic camera model selection task. This method was
published in [15] and leads to superior reconstruction accuracy and faster
execution times.
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(2020). From two rolling shutters to one global shutter. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
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4.2 Thesis Outline

The thesis is a comprehensive guideline for modeling, propagating, and utilizing
uncertainty in Structure from Motion (SfM). It starts with describing key mathe-
matical concepts and variables, then discusses uncertainty in image observations.
Then, the uncertainty propagation to algebraic solutions of minimal problems and
the reconstruction are derived. The thesis concludes by presenting two applica-
tions that benefit from the uncertainty of estimated parameters. In more detail,
the thesis is organized as follows:

• Section 5 describes the key concepts, including statistical basics and geomet-
rical relationships between cameras, points, and observations. This section
introduces the necessary mathematical notation of the main entities utilized
further and describes key relations between them. The first subsection dis-
cusses ways of modeling the uncertainty and introduces the approach we are
using in the following text. After that, we focus on functions of random
variables, i.e., the uncertainty propagation using linear, non-linear, and im-
plicit functions. It is followed by the description of the coordinate systems
and gauges in which the uncertainty is expressed. The next subsection dis-
cusses the main statistical ideas on how to estimate a suitable mathematical
model for given data, i.e., the information criterion for model selection. The
rest of this section focuses on the geometrical aspects of SfM. We show the
description of the most important camera models, related projection func-
tions, mathematical notation of the camera, 3D points, observations, and
the key geometrical relationships between them. Further, we describe the
constraints of the relative pose problem, i.e., the geometry between a pair of
cameras. The last subsection shows the bundle adjustment optimization of
the reconstruction.

• Section 6 provides a comprehensive overview of the state-of-the-art tech-
niques for estimating the uncertainty of the measurements. The first subsec-
tion focuses on the estimation of keypoints uncertainty using circular regions,
which covers how to estimate the variance or covariance matrix of the key-
points. We discuss three different noise models for keypoint coordinates,
namely isotropic homogeneous, isotropic inhomogeneous, and anisotropic in-
homogeneous models. We also extend the anisotropic inhomogeneous noise
model by normalizing the expectation of the weighted squared residuals. This
extension is further adapted for the description of keypoints uncertainty using
affine regions and is followed by an evaluation of all the approaches.

• Section 7 outlines our approach for estimating the measurement transfor-
mation uncertainty, such as the angular transformation variance for a pair
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of feature points. We describe the creation of a large-scale dataset of ho-
mographies that are used to calculate the positional transformation, scale
transformation, and angular transformation. By measuring the differences
between the derived ground truth transformations and the measured ones,
we can determine the variances of the transformations. Furthermore, the
variance of individual parameters is propagated to the uncertainty of the
feature points. The section concludes with an evaluation of the presented
approach.

• Section 8 presents methods for estimating the uncertainty in SfM. The sec-
tion is divided into two main parts. The first part introduces a generalized
approach for propagating the uncertainty of minimal problems. This ap-
proach explains how to use the uncertainty of feature points to estimate the
uncertainty of the algebraic solution of a minimal problem. The second part
discusses possible approaches for propagating uncertainty from keypoints to
the reconstruction, including camera extrinsic and intrinsic parameters, as
well as 3D points. This section describes the Taylor expansion algorithm
and the Nullspace bounding method. Finally, all of these approaches are
evaluated in the last subsection.

• Section 9 showcases two applications of uncertainty modeling. The first one
is an uncertainty-based robust model estimator, which involves utilizing the
probability of having a high inlier ratio as initialization of the SPRT test
to speed up the computationally expensive verification step of a RANSAC-
based method. The second application presents how to detect the camera
model from input images automatically. This is achieved by introducing an
accuracy-based criterion (AC) that evaluates the “goodness” of the mathe-
matical model for given data. Further, two methods: accuracy-based camera
model selection (ACS) and learned accuracy-based camera model selection
(LACS), estimate the camera model for input images. The last subsection,
evaluation, demonstrates the improvements the two uncertainty modeling
applications gained.

• Section 10 presents the conclusion, i.e., summarize the content of the thesis.
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5 Key concepts

This section provides a brief overview of the basic concepts and methods that are
utilized and further extended in the subsequent sections. The first part introduces
the term uncertainty and presents several mathematical models for describing it.
We then discuss how to propagate uncertainty from measurements to the output
of a function and present information criteria for evaluating how well a mathe-
matical model fits the observed data. The second part focuses on the geometrical
constraints applied in computer vision, particularly the Structure from Motion
algorithm. We begin by describing a camera and then proceed to discuss the
relationship between pairs of cameras and the relationship between cameras and
points in 3D. Finally, we describe the optimization method used to minimize the
reprojection errors.

5.1 Modeling the uncertainty

In order to describe the accuracy or uncertainty of an event, such as the noise
added to a feature point, several concepts must be introduced. The most common
definition of probability is based on Kolmogorov’s Axiomatic Definition, which
assumes a space Se of events Ai ∈ Se, each with a probability of occurrence P (Ai),
and the following axioms:

P (Ai) ≥ 0 (1)

P (Se) = 1 (2)

P (A1 ∪ A2) = P (A1) + P (A2) ifA1 ∩ A2 = ∅. (3)

When the outcome events ai from an experiment are non-numerical, they can be
described by a function x : Se → R that maps events to real numbers x = x(ai).
This function is called a random variable and describes the whole experiment,
while x(ai) (without the underscore) describes the outcome of one specific trial.
The random variable is regularly denoted by x, omitting the events ai ∈ Se.

There are two commonly used methods for describing a random variable,
namely the cumulative distribution function (CDF) Px(x) = P (x < x) and the
probability density function (PDF) px(x) = dPx(x)/dx. If the measurements are in
continuous space, we typically choose x(x) = x and omit the lower index of CDF
and PDF if it is clear from the context. In other words, we use P (x) and p(x)
instead.

The normal or Gaussian distribution is a well-known example of a probability
density function p(x). It approximates a sum of a large number of independent,
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identically distributed random variables with bounded variance, shown by Pa-
poulis [123]. For a single variable x ∼ N (µ, σ2), the density function is given
by

p(x) = g(x|µ, σ) =
1√
2πσ

e
−

1

2

(x− µ
σ

)2

. (4)

Here, µ and σ describe the mean and variance of this symmetric distribution
function. For a k-dimensional vector of variables (e.g., the reconstruction x := θ),
the joint probability density function is a multi-dimensional Gaussian distribution
x ∼ N (µ, Σ), defined by the density function

p(x) = g(x|µ, Σ) =
1√

(2π)kΣ
e
−

1

2
(x−µ)>Σ−1(x−µ)

. (5)

where µ is the mean vector (e.g., the ML estimate of the reconstruction µ := θ̂),
and Σ is the covariance matrix (e.g., the covariance matrix of estimated parameters
Σ := Σθ̂θ̂). This distribution is useful for modeling uncertainties in a wide range of
computer vision tasks, including SfM.

Modeling the uncertainty of feature points using the Gaussian distribution al-
lows describing the anisotropic inhomogeneous noise, shown in Figure 4. This
means that the accuracy of each feature point is described by its own R2×2 covari-
ance matrix. The covariance matrix of the maximum likelihood estimate can be
approximated by its Cramer-Rao lower bound, which is the inverse of the Fisher
information matrix. Kanazawa [85] has shown that the accuracy of a feature point
is proportional to the structure tensor of the image intensity function in the fea-
ture point neighborhood, and can be derived from template matching. Concretely,
the structure tensor is a symmetric positive semi-definite matrix R2×2 describing
the covariance matrix of a keypoint up to a noise variance factor. In other words,
a Multivariate Gaussian distribution can describe the keypoints uncertainty as
the reconstruction uncertainty. Moreover, assuming independently detected fea-
ture points, we can compose one common covariance matrix for all keypoints as a
block-diagonal matrix of R2×2 covariance matrices for individual keypoints.

To approximate the parameters of a Gaussian distribution for a set of events
or measurements, we can use the first few moments. For feature points, since
there is only one measurement for each, we typically assume isotropic noise or the
structure tensor of the image intensity [54, 58, 85]. Moments can be defined for
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both continuous and discrete measurements, i.e.

mr =

∫ ∞
x=−∞

(x− c)rp(x)dx r ≥ 0 (6)

mr =
∞∑
i=1

(xi − c)rP (xi) r ≥ 0 (7)

and can be either raw moments or central moments. Raw moments have c = 0,
while central moments have c = E(x), where E is the expectation operator. For
continuous or discrete probability distributions, the expectation operator is defined
as:

µx
.
= E(x) =

∫ ∞
x=−∞

x p(x)dx (8)

µx
.
= E(x) =

∞∑
i=1

xiP (xi). (9)

The raw moment of the first degree can be used to estimate the mean of the
Gaussian distribution, i.e., for r = 1 and vector of random variables µx

.
= E(x) =

m1. Further, the central moment of the random variable (or variables) of rth
degree and c = E(x) (or c = E(x)) approximates the variance (or covariance
matrix) of the Gaussian (or Multi-Dimensional Gaussian) distribution

σ2
x =

∫ ∞
x=−∞

(x− E(x))2p(x)dx (10)

Σxx = E[(x− E(x))(x− E(x))>]. (11)

5.2 Functions of random variable

The uncertainty of feature points can be modeled by a random variable with
a suitable probability distribution. This probability distribution can be further
propagated to the parameters of the SfM. In general, we assume a vector of ran-
dom variables x, which is described by the probability density function p(x), and
a function y = f(x). The goal is to derive the probability density function p(y).
We focus on the propagation of Multi-Dimensional Gaussian distribution that is
commonly used to describe the uncertainty of keypoints [58, 60, 85]. This section
briefly describes the propagation of the probability distribution for linear, non-
linear, and implicit functions of random variables.

If we assume a linear function that express y from parameters x ∼ N (µx, Σxx),
we can write y = f(x) as function

y = Ax+ b (12)
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leading to the y ∼ N (µy, Σyy) distribution with the mean value

E(y) = AE(x) + b (13)

µy = Aµx + b (14)

and the covariance matrix

Σyy = E[(y − E(y))(y − E(y))>]

= E[(Ax− AE(x))(Ax− AE(x))>]

= AE[(x− E(x))(x− E(x))>]A>

= AΣxxA
>.

(15)

Thus the random variables y have distribution y ∼ N (Aµx + b, AΣxxA
>) for linear

function y = Ax+ b and x ∼ N (µx, Σxx).

Usually, we have a set of estimated parameters x̂ (e.g., the reconstruction x̂ := θ̂)
and the non-linear function y = f(x) (e.g., the projection function f := p). In
this case, the function f can be replaced by its linearized version, i.e.,

y ≈ f(x̂) + Jdx where J = [Jj] =
∂f(x̂)

∂xj
. (16)

It is beneficial to extend this notation to multiple functions f = {f1, . . . , fI} (e.g.,
the projection equations for individual keypoints f := p) and write

y ≈ f(x̂) + Jdx where J = [Jij] =
∂fi(x̂)

∂xj
. (17)

Then, the first-order approximation of the density function p(y) equals

E(y) ≈ µy = f(µx) D(y) ≈ Σyy = JΣxxJ
> (18)

In short, we can write y ∼ N (f(µx), JΣxxJ
>) for nonlinear function y = f(x) and

x ∼ N (µx, Σxx).

The propagation of probability distribution described above is known as the for-
ward propagation of uncertainty. Assuming that f represents the set of projection
functions, eq. (18) propagates the uncertainty of parameters (e.g., the camera
poses) to the observations (i.e., the keypoints). For the sake of simplicity, we also
introduce the concept of backward propagation of uncertainty, which propagates
the probability distribution from observations to the parameters (e.g., from the
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keypoints to the reconstruction). In the case of linear function y = Ax + b and
y ∼ N (µy, Σyy) the random variables x has distribution

x ∼ N
(
A−1µy − b,

(
A>Σ−1

yy A
)−1
)
. (19)

We can also extend this formula for the non-linear function, i.e., y ≈ f(x̂) +
Jdx assuming y ∼ N (µy, Σyy). The random variable x propagated by non-linar
function f has distribution

x ∼ N
(
f−1(y),

(
J>Σ−1

yy J
)−1
)
. (20)

Note that the function f−1(y) does not exist when the system of equations is not
regular, as is the case with the projection functions in SfM.

The following paragraph is related to the propagation of probability distribution
using implicit functions. In computer vision, many geometric relationships, such
as relative pose constraints, are in the form of implicit functions f(x,y) = 0, and
it can be difficult to express them in the form of y = f(x). For example, the
Homography matrix H ∈ R3×3 constraints can be written as

[
u>2 1

]
H

[
u1

1

]
= 0 (21)

for each pair of keypoints u1 ∈ R2 ,u2 ∈ R2 in the first and second image. However,
deriving H = f(u1, u2) is more complicated. Using the Taylor expansion, i.e., the
first-order approximation, we can write

df(x,y) = Ax dx+ By dy = 0 where Ax =
∂f(x̂, ŷ)

∂x
; By =

∂f(x̂, ŷ)

∂y
. (22)

If the matrix By is invertible, then dy = B−1
y Ax dx and we have linearized formula

transforming x→ y. Therefore, the covariance of y leads to

Σyy = B−1
y AxΣxxA

>
x B
−>
y (23)

5.3 Coordinate systems and gauges

Geometrical constraints in computer vision are typically defined up to some degree
of freedom. The reconstruction’s random variables are subject to two gauges: the
gauge of the coordinate system and the gauge of the covariance matrix. Changing
the coordinate system gauge, i.e., the origin, rotation, and scale of basis vectors,
is called a K-transformation. In contrast, the change of the covariance matrix
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gauge is called an S-transformation. It is essential to consider these gauges, as
the choice of coordinate system can affect numerical stability. For instance, the
scale of keypoints can be chosen in pixels or pixels multiplied by the inverse of
the image width. Although both coordinate systems satisfy the same geometrical
constraints, the second one is more numerically stable. The focal length in pixels
has a larger variance than the other camera parameters, leading to a large range of
values in the Jacobian matrix of the projection equation. These values are squared
in the information matrix (see eq. (18)). The gauge of the covariance matrix is
critical for a unique description of the uncertainty. If we scale, rotate, or shift the
camera poses and 3D points, the image projections remain the same, making the
uncertainty of the parameters infinite. Assuming seven parameters fixed, e.g., the
first camera pose is at the origin, the rotation is the unit matrix, and the baseline
length equals one (as in SLAM), the covariance matrix of camera centers increases
with the distance from the first camera. Such a gauge of the covariance matrix is
misleading because we do not expect that cameras in SfM have larger uncertainty
if they are far from the first camera. Therefore, it is crucial to properly fix the
gauge of the covariance matrix to correspond to the uncertainty of inner geometry.

The transformation of the coordinate system is straightforward. We focus on the
transformation of the gauge of the covariance matrix. Let us assume a set of equally
weighted constraints, such as h̄(x̂) = 0 for x ∼ N (x̂, Σx̂x̂). These constraints are
applied only to the parameters and fix all degrees of freedom. The Jacobian of
these constraints can be expressed as:

H̄ =
∂h̄(x̂)

∂x
. (24)

This Jacobian allows us to express the S-matrix, which fixes the gauge of the
covariance matrix such that h̄(x̂) = 0. The S-matrix and transformed covariance
matrix are defined as:

Sh̄ = I− H̄(H̄>H̄)−1H̄> (25)

Σxx = ShΣxxS
>
h̄ . (26)

More details about S-transformation can be found in Baarda [124] and Forstner [60].

5.4 Information criterion for model selection

In order to perform a reconstruction, we need to choose constraints between mea-
surements and parameters. For example, the camera model may assume a pinhole,
polynomial, or division radial distortion model. The relative pose constraints may
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be realized by a homography, essential, or fundamental matrix. However, meth-
ods for parameter estimation (such as minimal solvers) and optimization (such as
gradient descent) are typically designed on top of a single geometric model, which
is selected manually [8, 22, 48, 57]. To automate this process, we need to consider
key concepts for model selection based on input data.

Hypothesis testing can be carried out using several statistical methods. If the
distribution of residuals based on a hypothesis is not consistent with the residuals
calculated from measurements and estimated parameters to a significant degree,
the hypothesis is rejected. The statistical criterion for testing geometric hypothe-
ses, such as testing that the variance of a normally distributed squared residuals is
consistent with a known variance, can be formulated in the form of a chi-squared
test (χ2). Mathematically, assuming the null hypothesis H0 : x ∼ N (µx = 0, σ2

x)
(e.g., x is a random variable of residuals between projections of 3D points and cor-
responding observations), the variance of the reprojection error can be empirically
determined based on the detection level in the scale pyramid of Lowe detector [60].
The sum of normalized squared residuals, given by

X2(x) =
ΣN
n=1(xn − µx)2

σ2
(27)

should follow the χ2
N distribution with N degrees of freedom if the hypothesis H0

holds. If the value of X2(x) is larger than the critical value χ2
α,N , the hypothesis

is rejected with a significance level of α.
There are several disadvantages of hypothesis testing. Firstly, while a hy-

pothesis can be rejected, it cannot be accepted, and we cannot prove that the
mathematical model is suitable. Secondly, we require knowledge of the accuracy
of the sensor (such as related noise of feature point locations) and the specified
significance level (such as 1% or 5%). However, these parameters are not always
known in advance. Thirdly, the standard statistical approach assumes a study
of asymptotic properties in the limit of a large number of data points, such as
all reprojection errors. However, when focusing on the distribution of individual
feature points, we have only a single measurement and cannot even compute such
an essential measure as the sample average. Therefore, the usage of standard sta-
tistical methods for model selection is limited as described by Kanatani [125].

Another approach for selecting a suitable model is to use a heuristic measur-
ing the “goodness” of a fit of the data to a mathematical model concerning some
statistical property. For example, one such heuristic is the Akaike information
criterion (AIC), which measures the amount of information lost by a model, as
published in Akaike [105]. Another heuristic is the minimum description length
(MDL), which measures the minimal length of the code necessary for describing
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the data, as shown by Rissanen [110]. These types of heuristics are collectively
known as ”information criteria” (IC). The basic ideas of the well-known ICs are
described in Sec. 3. The Accuracy-based Criterion [15] is discussed in Sec. 9.

5.5 Camera models

The camera device captures light reflected from the objects in its view frustum and
forms a 2D image. This process is described by geometric constraints between ele-
ments in 3D space and their correspondences in the image. The constraints reflect
physical properties such as focal length, principal point, or lens distortion. The
commonly used constraints to mathematically describe the cameras are called cam-
era models Mi ∈ M. In fact, we assume n camera models M = {M1, . . . ,Mn}
for the purpose of their comparison. The best fitting camera model to the ob-
served data is called Mb. The 3D reconstruction, denoted by θ(i), for a single
camera model Mi is built from the observations u(i) in the images. The vector of
observations assumes only the inliers that are employed in the reconstruction. In
the most general form, we assume the projection function p(i) that projects the
3D points into the images, expressed as

u(i) = p(i)(θ(i)) . (28)

In practice, we estimate the reconstruction θ̂
(i)

from measured observations u(i) us-
ing techniques such as SFM [8], Theia [57], RealityCapture [48], or OpenMVG [22].
However, due to the complexity of the problem, the projections û(i) of 3D points do
not generally coincide with the observed keypoints u(i), resulting in a reprojection
error (as seen in equation eq. (44)). Furthermore, some projections may not have
any measured counterparts in all images. To account for this, we assume an index
set S that determines which points are visible in each camera. The reconstruction
of the camera model Mi can be mathematically formulated as

θ̂
(i)

= {P̂
(i)
, X̂

(i)
, θ̂

(i)

rd} (29)

It consists of M (i) 3D points X̂
(i)

= {X̂
(i)

1 , X̂
(i)

2 , . . . , X̂
(i)

M(i)}, L(i) cameras P̂
(i)

=

{P̂
(i)

1 , P̂
(i)

2 , . . . , P̂
(i)

L(i)}, and the radial distortion parameters θ̂
(i)

rd . Single projection
ûl,m ∈ R2 of point X̂m ∈ R3 in the image plane related to camera P̂ l is described
by

û
(i)
l,m = p(i)(P̂

(i)

l , X̂
(i)

m , θ̂
(i)

rd ) ∀(l,m) ∈ S. (30)

where l is the index of the camera and m is the index of the 3D point. In the
following text, the camera P̂ l ∈ R9 is composed of the focal length f̂l ∈ R, the
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Figure 5: Visualization of camera parameters and projection of the 3D points.

principal point upp,l ∈ R2, Euler vector êvec,l ∈ R3 (i.e., a rotation axis multiplied by
a rotation angle, which can be transformed into the rotation matrix by Re(êvec,l) ∈
R3×3), and the translation t̂l ∈ R3. Assuming one camera model Mi, the index
()(i) and the indices ()l,m are skipped whenever it is clear from context.

The radial distortion parameters θ̂rd are applied on projections realized by
the simple pinhole camera model to reflect the lens distortion. In general, the
distortion function h(i) depends on the distance rdist,k of the k-th keypoint uk from
the distortion center. For simplicity, let’s assume that the distortion center is at
the principal point ûpp. The projection function p(i) for the camera model Mi

with radial distortion can be expressed as

û
(i)
k = f̂ h(i)(r̂2

dist,k, θ̂rd)ũk + ûpp , (31)

where r̂2
dist,k = ||ũk||2 and ũk is the projection of m-th 3D point before applying

radial distortion

ũk =

[
ũk,1
ũk,2

]
=

[
X̃1,m/X̃m,3

X̃2,m/X̃m,3

]
. (32)

The 3D point X̃m is in the camera coordinates obtained by rotating and translating
the point X̂m

X̃m = Re(êvec)X̂m + t̂ . (33)

The radial distortion function is usually modeled as a rational function [126], i.e.

h(i)(r̂2
dist,k, θ̂rd) =

1 + k̂1r̂
2
dist,k + k̂2r̂

4
dist,k . . . k̂R r̂

2B
dist,k

1 + d̂1r̂2
dist,k + d̂2r̂4

dist,k . . . d̂D r̂
2D
dist,k

, (34)
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where k̂j and d̂q are parameters of the radial distortion model. The most common

models are polynomial (Brown) models with d̂q = 0, ∀q, or division models with

k̂j = 0, ∀j. We denote the radial distortion model eq. (34) with the first B non-

zero parameters k̂j and the first D non-zero parameters d̂q as MB|D. M0|0 is the
simple pinhole camera model with no radial distortion. Different SfM pipelines use
different camera models, e.g. COLMAP [8] uses M0|0, M1|0, M2|0, M3|3

2, Mesh-
room [127] uses M0|0, M3|0 and Theia [57] uses M0|0, M2|0.

Observations ul,m that satisfy L(ε̂
(i)
l,m) = L(||ul,m−û(i)

l,m||) < δ, for some thresh-
old δ, are the inliers of the model Mi. The L is a loss function to robustify the
3D reconstruction estimate and its optimization.

5.6 Relative pose

The relative pose between two perspective views is an essential part of SfM. Assum-
ing a 3D point Xm projected by two pinhole cameras P 1 and P 2 into keypoints
u1,m and u2,m according to eq. (30), the epipolar constrains relate these keypoints
in the first and second cameras (using camera model M0|0). If we assume intrinsic
geometry encapsulated in relative pose geometry, the constraints can be written
as an implicit equation given by the fundamental matrix F ∈ R3×3 of rank two[

u>2,m 1
]
F

[
u1,m

1

]
= 0 (35)

The fundamental matrix projects points u1,m in homogeneous coordinates into

lines l2,m = F
[
u1,m 1

]>
in the second image. If the eppipolar constrains holds,

the lines l2,m are coincided with points u2,m, i.e., for each keypoint and correspond-
ing line holds

[
u>2,m 1

]
l2 = 0. The fundamental matrix can be further expressed

in the terms of camera parameters as

F = K−>2 [−t21]×R21K
−1
1 = K−>2 R2[C2 −C1]×R

>
1 K
−1
1 . (36)

If the calibration matrices K1, K2 are known, we can constrain observations in

camera coordinate system
[
ml,m 1

]>
= K−1

[
ul,m 1

]>
by essential matrix called

E. Note that ul,m is in the image coordinate system, expressed in pixels. Therefore,
we get [

m>2,m 1
]
E

[
m1,m

1

]
= 0 (37)

where
E = [−t21]×R21. (38)

2In COLMAP, M3,3 includes also tangential distortion terms.
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Figure 6: Visualisation of epipolar geometry for M0|0, i.e., θrd = ∅.

Having the keypoint correspondences between two planes in a 3D scene, the fun-
damental matrix degenerate into homography matrix noted by H ∈ R3×3. The
homography matrix has full rank and map keypoints u1,m in the first image at
keypoints u2,m in the second one up to a factor γ, i.e.,

γ
[
u>2,m 1

]
= H

[
u1,m

1

]
. (39)

The previous equations hold for the pinhole camera model without radial distor-
tion. However, radial distortion can be introduced through various constraints,
such as the assumption of the division model with one parameter for each image
in an image pair. This relative pose model is described in Kukelova [35], and its
constraints can be written in the form of an implicit equation

u>2,m(λrd,2) Fu1,m(λrd,1) = 0 (40)

where keypoint ul,m(λrd,l) = [ul,m, (1 + λrd,l||ul,m||22)]>. In the last two decades,
several solvers have been developed that calculate the relative pose of two views
from keypoint correspondences under different constraints, such as assuming a dif-
ferent number of radial distortion parameters. Furthermore, a currently active
research topic discussed in [17], is the use of affine correspondences (AC) in-
stead of point correspondences (PC). An affine correspondence, realized by triplet
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(ui,u
′
i, Ai), assumes that the neighborhood of ui is mapped by an affine trans-

formation Ai ∈ R2×2 into the second image in the neighborhood of keypoint u′i.
The main advantage of solvers using affine correspondences is that they introduce
more constraints, and fewer of them are required to estimate the model param-
eters. For example, only two matches instead of four are required to estimate a
homography matrix, and only three correspondences instead of seven are required
to estimate the fundamental matrix [33, 128]. This increases the probability of
drawing an all-inlier sample, thereby decreasing the required number of iterations
of RANSAC [129].

5.7 Bundle Adjustment

Bundle adjustment, introduced by Triggs [46], is a key method in computer vision.
It involves non-linear optimization of the ”bundles” of rays that intersect camera
centers Ĉ l, points in images ûl,m, and related 3D points X̂m where (l,m) ∈ S.
Bundle adjustment is necessary for propagating uncertainty from measurements
to the reconstruction. The uncertainty of the keypoints is propagated using a
linearized version of the non-linear projection function. Thus, if the estimated
reconstruction is far from the optimal reconstruction, the uncertainty propagation
leads to poor and inaccurate results.

This optimization is generally used as the final step of SfM and improves the
accuracy of calculated camera poses and positions of 3D points. It allows the use
of the covariance matrices of keypoints in images, employs a robust loss function
L to avoid degeneracy, and provides the Maximum Likelihood Estimate (MLE) of
the reconstruction.

Given a single camera model M i, the optimization problem seeks to minimize the
loss function L(ε̂

(i)
l,m) = L(||ul,m − û(i)

l,m||2) for the correspondences (l,m) ∈ S. For
brevity, we will drop the model index in the following paragraphs. Without loss
of generality, we can write the minimization task of all correspondences as

θ̂ = arg min
P l,Xm,θrd

 ∑
∀(l,m)∈S

L(||p(P̂ l, X̂m, θ̂rd)− ul,m||2)

 . (41)

One common optimization method used to solve this equation is the Levenberg-
Marquardt algorithm [33]. Since the projection function is non-linear, we need
to linearize it using the first-order Taylor series expansion, which results in the
following equation

p(θ) = û+ J∆θ (42)

where J is the derivative of p(θ) w.r.t. θ in linearization point θ̂. Further ∆θ =
(θ̂ − θ) denote a small change of the reconstruction. Let us assume that the loss
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function L(ε̂) does the weighting by the assumed accuracy of the observations. If
the covariance matrix of all keypoints Σuu is not known, the standard reconstruction
software assumes Σuu = E2N . The sum of weighted squares of residuals, i.e., the
Mahalanobis distances of residuals to zero vector, can be expressed as

Ω(θ̂) = ε̂>Σ−1
ε̂ε̂ ε̂ (43)

with residuals
ε̂ = ε(θ̂) = u− p(θ̂) (44)

and covariance matrix
Σε̂ε̂ ≈ Σuu/(2N −K). (45)

The variable K = dim(θ̂) represents the dimension of the 3D reconstruction. In
the case of a local or global optimum, the partial derivative of any function is equal
to zero. Therefore, for the maximum likelihood estimate of the reconstruction θ
in the linearization point θ̂ holds

∂Ω(θ)

∂θ>
= 2

(
∂ε(θ)

∂θ>
Σ−1
ε̂ε̂ ε(θ)

)
= J>Σ−1

ε̂ε̂ ε(θ) = 0 . (46)

This, in combination with eq. (44), leads to the normal equation given by

(J>Σ−1
ε̂ε̂ J) ∆θ = J>Σ−1

ε̂ε̂ (û− u) . (47)

The Levenberg-Marquardt algorithm adds a damping term γ to control the update
step, and solves the resulting equation

∆θ = (J>Σ−1
ε̂ε̂ J + γI)−1J>Σ−1

ε̂ε̂ (û− u). (48)

iteratively to approach the optimum solution. This improves the stability of the
algorithm and prevents the optimization from getting stuck in a local minimum.
The addition of a damping term γ helps to control the size of the update step,
ensuring the convergence of the algorithm towards the global optimum. A key
benefit of this formulation is that the damping term makes the matrix J>Σ−1

uuJ+γE
full rank, allowing it to be efficiently inverted. In SfM applications, where the
equation J>Σ−1

ε̂ε̂ J has seven degrees of freedom, the use of damping term enables
the calculation of the inversion, avoiding the slower and less numerically stable
MP inversion.
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6 Uncertainty of the measurements

The reconstruction process begins with detecting unique feature points in images.
Each feature point, as defined in [61], describes a single circular region in the im-
age that can be further extended to a local affine region [130]. SfM algorithms
estimate mathematical models, such as relative or absolute pose, from sets of cor-
respondences of feature points between images. In this section, we discuss how to
estimate the uncertainty of the keypoint, which refers to the coordinates of the
center of the circular or affine region. To our knowledge, the uncertainty analysis
of the keypoint of affine region has not been published yet. We discuss these topics
in subsections 6.2 and 7.

6.1 Keypoints uncertainty using circular regions

Each keypoint ul,m ∈ R2×2 is located with a certain degree of accuracy inherent
to the detection process. This accuracy depends on various factors such as the
viewing angle, feature point contrast, lighting, camera sensor noise to signal ratio,
etc. However, the keypoint accuracy is independent of the estimated reprojection
error ε̂l,m, unless a suitable mathematical model of the physical camera and its
intrinsic parameters are known in advance, as discussed in Kanatani [54].

There are several methods for modeling the uncertainty of keypoints. This
section describes these models, summarizes the state-of-the-art methods for their
estimation, discusses their limitations, and presents a new improved approach.

Isotropic homogeneous noise model: Most of the current reconstruction pipe-
lines [8, 22, 57] and detectors [26, 61, 88] assume the isotropic homogeneous noise
model of keypoints uncertainty, i.e., Σuu = σ2

0, E2N . This simplest model assumes
that all the keypoints have the same accuracy. Such a simplification is commonly
used because, to our knowledge, there is no library available for describing the
accuracy of the most common detectors. Using this noise model, the variance
factor for all keypoints can be estimated as

σ̂2
0 =

ε̂>ε̂

R
. (49)

The redundancy R = 2N −K is the number of measurements minus the dimen-
sion of the 3D reconstruction. Here, ε̂ = u− û realize the reprojection errors and
Σ̂uu = σ̂2

0E2N is the estimated covariance matrix, indicating that the accuracy of
all keypoints is the same up to a common scale. To estimate varying accuracy for
each keypoint, we need to model the noise variance factor σ̂2

ui
.
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Isotropic inhomogeneous noise model can be approximated according to
Förstner [60], p680. This model assumes an unknown noise variance σ̂2

ui
:= σ̂2

ul,m

(where m is the index of 3D point, and l the index of camera) and a unit ma-
trix approximate covariance matrix for each keypoint, i.e., Σ̂uiui = σ̂2

ui
E2. We use

the notation (.)l,m := (.)ul,m for brevity. The model is based on the intuition that
feature points with larger scale may have larger noise variance, i.e., the σ̂2

ui
(s2
ui

) de-
pends on the squared feature point scale s2

ui
. The goal is to estimate the empirical

function σ̂2
ui

(s2
ui

).
To achieve this goal, we need cameras following a known camera model with

known intrinsic and extrinsic parameters, and remove the distortion caused by in-
appropriate modeling of the camera. Suppose we calibrated the camera in advance
using a suitable camera model Mi. In that case, we can estimate the keypoint
variance from the weighted residuals such that they follow a centered Gaussian
distribution. Expressed mathematically, the noise model, called c, is composed of
two independent noise sources. The static scale-space independent part a and the
second part b, which is a multiple of the feature point scale s, i.e., c = a + bsui .
The random variable a ∈ N (0, σ2

a) and b ∈ N (0, σ2
b ) lead to the variance model

σ2
c = σ2

a + σ2
bs

2
ui

and the variance of the ui keypoint σ̂2
ui

= σ̂2
c (sui). To simplify the

iterative keypoint variances estimation, we define the information matrix

Wuiui = Σ−1
uiui

= (Σaiai + Σbibi)
−1 (50)

where
Σaiai = σ2

ai
E2; Σbibi = σ2

bi
s2
ui
E2. (51)

The σ2
ai

, σ2
bi

realize the variance components of keypoint ui. Each component of
weighted squared residuals can be expressed as

ωui = ||ωai ||2 + ||ωbi ||2 (52)

where
ωai = εi

>WuiuiΣaiaiWuiuiεi; ωbi = εi
>WuiuiΣbibiWuiuiεi. (53)

Moreover, the expected value of each weighted squared residual component

E(ωai) = tr(WuiuiΣaiaiWuiuiΣεiεi) (54)

E(ωbi) = tr(WuiuiΣbibiWuiuiΣεiεi). (55)

equals one if the weighted squared residuals follow the centered Gaussian distribu-
tion. The term Ruiui = WuiuiΣεiεi express the redundancy number of the point ui.
We can assume an approximation rm := rl,m, i.e., the redundancy number rl,m is
the same for all the keypoints seeing the point Xm. The redundancy number is
approximated by

rl,m ≈ rm =
2Nm − 3

2Nm

(56)
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where Nm is the number of keypoints (i.e., rays) that determine the position of the
3D point Xm. This approximation is valid when a large number of inlier keypoints
are present in camera P l, and the camera pose is fixed regardless of the presence
of a single 3D point. In other words, we assume

Ruiui ≈ rmE2. (57)

The expectations from equations (54), (55) can be used as the denominators of
the weighted squared residuals leading to the estimated variance factors

σ̂2
ai

=
ω̂ai

E(ω̂ai)
σ̂2
bi

=
ω̂bi

E(ω̂bi)
. (58)

Extending the notation about the k-th iteration index, the new variance compo-
nents are estimated from previous or initial residuals ε

(k)
i and variance components

(σ̂2
ai

)(k), (σ̂2
bi

)(k), i.e.,

(σ̂2
ai

)(k+1) =
(ω̂ai)

(k)

E((ω̂ai)
(k))

(σ̂2
bi

)(k+1) =
(ω̂bi)

(k)

E((ω̂bi)
(k))

. (59)

The covariance matrices for individual keypoints are composed as

Σ̂(k+1)
uiui

=
(
(σ̂2

ai
)(k+1)(σ̂2

ai
)(k) . . . (σ̂2

ai
)(1) + (σ̂2

bi
)(k+1)(σ̂2

bi
)(k) . . . (σ̂2

bi
)(1)s2

ui

)
E2. (60)

After the covariance matrix estimation, we need to run the bundle adjustment to
optimize the reconstruction with new weights of the residuals. This process leads
to the residuals ε

(k+1)
i . The remaining question is how to initialise the variance

components (σ̂2
ai

)(1), (σ̂2
bi

)(1). The square root of eq. (58) with priory approximate

variance of keypoint coordinates (σ̂2
l,m)(0) := 1 allow us to estimate the initial

normalized reprojection errors

ŷ(0)
ui

= ŷ
(0)
l,m =

ε̂
(0)
l,m

(σ̂2
l,m)(0)√rl,m

≈
ε̂

(0)
l,m√
rm
. (61)

To robustly estimate the initial variance components of function σ2
ui

(s2
ui

), each

normalized residual ŷ(0)
ui

of scale sui is assigned into one of 30 bins [sb, sb+1]. The

standard deviation σ̂
(0)
b,b+1 of each bin [sb, sb+1] is

σ̂
(0)
b,b+1 = 1.4826 med({abs(ŷ(0)

ui
)|sui ∈ [sb, sb+1]}). (62)

The factor 1/N−1(0.75) = 1.4826 is used to scale the median of normalized resid-

uals to the standard deviation. Eq. (62) lead to σ̂
(0)
i = σ̂

(0)
b,b+1 for each bin ap-

proximated by si = sb + (sb+1 − sb)/2 where i ∈ {1, . . . , B}. In other words,
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the initialization of variance components can be seen as fitting a line (expressed
by (σ̂2

ai
)(1), (σ̂2

bi
)(1)) to the keypoints scale - the standard deviation scatter plot.

The authors of [60] did not evaluate the iterative part of variance components
estimation and directly utilize the initial estimate of the Lowe (SIFT) keypoint
variance

σ̂(0)
ui

=
√

0.132 + (0.05sui)
2. (63)

to avoid the bundle adjustment and re-weighting of the residuals. The proposed
method can be generalized for any scale-independent detector that provides infor-
mation about the scale or window size of detected feature points. However, this
approach has some limitations. It is derived from a single physical camera with a
fixed field-of-view, fixed color mapping, and one environment captured in the im-
ages. Additionally, the variance estimate in eq. (63) is specific to the Lowe detector
with fixed parameters, such as edge and peak thresholds, and does not involve an
iterative process between keypoint covariance estimation and bundle adjustment.
As a result, the coefficients (σ̂ui)

(k) may vary for different hyperparameters of the
detector. Furthermore, the undistortion of images can introduce a small error, as
the radial model M2|0 used for undistortion may not be as accurate as implicit
camera calibration, as shown in Schöps [131].

The anisotropic inhomogeneous noise model can be estimated from the
structure tensor [132] describing the local neighborhood of the feature point. Its
inversion, i.e., Σ̂auiui = T−1

ui
is proportional to the covariance matrix of keypoint

ui. The model assumes the relationship Σuiui = σ2
0,ui

Σauiui where the variance
factor is σ2

0,ui
= 1. The linearized template matching model, realized by Tui ,

is calculated by dyadic products of the smooth image gradients Ix, Iy, i.e., the
vectors obtained by the image convolution with a smooth differentiating filter.
Note that some authors (Kanazawa [85]) call the dyadic products of the smooth
image gradients the Hessian matrix. That may be misleading because most of the
literature denotes the Hessian matrix as the second derivative of the intensity levels
of image pixels. Moreover, the paper [85] assumes a covariance matrix estimation
from the circular regions without specifying their radius. We assume, based on
the Lowe [61], that the radius of the circular region is approximately 3sui , i.e.,
the feature point window Ni has the dimension at least 6sui × 6sui . A reasonable
choice of the standard deviation of the differentiation kernel (for keypoint ui,
according to the Dickscheid [132]) is tui = sui/3. Note that the 1/3 factor is an
empirically set hyperparameter. The Gaussian convolution kernel Gt can be defined
as multiplication of two 1D convolution kernels

Gt(x, y, t) =

(
1

2πt
exp−

x2

2t2

) (
1

2πt
exp−

y2

2t2

)
(64)
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allowing the derivation of 1D differential Gaussian kernels Gx,t,Gy,t and calculation
of smooth image gradients as the convolution

Ix,t(x, y, t) = Gx,t(x, y, t) ∗ I(x, y) where Gx,t =
∂Gt
∂x

= − x
t2
Gt (65)

Iy,t(x, y, t) = Gy,t(x, y, t) ∗ I(x, y) where Gy,t =
∂Gt
∂y

= − y
t2
Gt. (66)

Note that we suppressed the operator parameters, e.g., Gt := Gt(x, y, t), Gx,t :=
Gx,t(x, y, t), for brevity. The dyadic product of Ix,t, Iy,t functions (can be seen as
Hadamard product of the smooth gradient images) is the structure tensor

T = Gs ∗
[
Ix,tIx,t Ix,tIy,t
Ix,tIy,t Iy,tIy,t

]
. (67)

The definition in eq. (67) assumes as the output 4D tensor of values, i.e. three
weighted squared smooth gradient images for each pixel. In practise, we have tui ,
sui (instead of t,s) related to ui and the feature point region. The convolution with
Gs(ui,1, ui,2, sui) for a single point ui can be seen as the weighting (by Gaussian
weights) of squared image derivatives. Therefore, Ix, Iy evaluated far from ui
have neglectable contribution to Tui ∈ R2×2. We assume the window size 6sui and
weight squared smooth image gradients (in this window) by Gs weights based on
their distance to ui. The σn realizes the standard deviation of the image noise, and
NNi

is the number of pixel intensities used in weighting by Gs.The covariance matrix
of a single feature point that describes a circular region in the image is (according
Dickscheid [132]) calculated as the inversion of related structure tensor, i.e.,

Σ̂0
uiui

=
σn
NNi

T−1
ui

(68)

The anisotropic inhomogeneous noise model estimation has the benefit that the
inversion in Equation eq. (68) can be calculated without prior knowledge of the
physical camera and reconstruction. Only the images, feature points, differentia-
tion and integration scales (sui and tui), and the standard deviation of the image
noise (σn) are required as inputs. On the other hand, the isotropic inhomogeneous
noise model requires camera calibration, image undistortion, and camera extrin-
sics prior to the iterative update of the σ2

ai
and σ2

bi
parameters of the empirical

Equation eq. (63). Furthermore, there is no research that evaluates how well the
empirical function σui(sui) fits the noise variance factor for different camera de-
vices, environments, hyperparameters of the SIFT detector, and other common
detectors.
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Our extension combines and generalizes the methods described above. We esti-
mate the anisotropic inhomogeneous noise and simultaneously estimate the noise
variance by normalizing the expectation of the weighted squared residuals. First,
we estimate the covariance matrix Σ̂0

uiui
as the weighted inversion of the structure

tensor according to eq. (68). Next, we follow the Eqs. 50 - 59, using the redefined
eq. (51) as

Σaiai = σ2
ai
Σ̂0
uiui

; Σbibi = σ2
bi
s2
ui
Σ̂0
uiui

. (69)

The variance components (σ̂2
ai

)(1), (σ̂2
bi

)(1) are estimated according equations (61),

(62) assuming the weighting of each coordinate of ε̂
(0)
l,m ∈ R2 by diagonal values of

Σ̂0
uiui
∈ R2×2, i.e.

(
ŷ

(0)
l,m

)
j
≈

(
ε̂

(0)
l,m

)
j(

Σ̂0
uiui

)
jj

√
rm

for j = {1, 2}. (70)

This approach allows us to compensate the image noise σn distortion by applying
various differentiation Gt and smoothing Gs kernels for individual keypoints.

6.2 Keypoints uncertainty using affine regions

State-of-the-art SfM pipelines such as COLMAP use affine region detectors for
faster and more robust model estimation algorithms. However, to our knowledge,
there is no approach for estimating the uncertainty of keypoints using related affine
regions. Non-maxima suppression of the feature point scale is not straightforward
in the 4D space of affine region parameters, which includes rotation, scale, and two
shears. We assume that the keypoint ui denotes the center of the affine region, and
the matrix Aui ∈ R2×2 transforms the unit circle to the ellipse bounding the region
area, as shown in an example in Fig. 8. We propose to approximate the scale of
the affine region as one-third of the mean region radius, which is the geometric
mean of the ellipse semi-axes

sui =

√
(λui,1 + λui,2) /2

3
where [λui,1, λui,2] = eig(AuiA

T
ui

). (71)

The structure tensor for a single affine region assumes a differentiation kernel with
the same standard deviation tui = sui/3 and a convolution with a multivariate
Gaussian GS that follows the shape of the affine region, i.e.

TA = GS ∗
[
Ix,tIx,t Ix,tIy,t
Ix,tIy,t Iy,tIy,t

]
. (72)
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The symmetric semi-definite kernel applied in the GS operator follows the shape of
the affine region, and we define it as

GS(Aui) = N
(

0,
1

9
AuiA

T
ui

)
. (73)

The unbiased estimate of keypoint covariance matrix is therefore redefined as

Σ̂0
uiui

=
σn
NNi

T−1
A (ui, Aui) (74)

where NNi
is the number of pixels inside the affine region Aui . This approach is

particularly beneficial for elongated affine regions. In comparison with circular
regions, we assume the image intensities inside the affine region and remove the
influence of surrounding structures that are not employed in keypoint position es-
timation.

Extension: We can extend this approach to estimate the anisotropic inhomoge-
neous noise from affine regions and simultaneously estimate the noise variance by
normalizing the expectation of the weighted squared residuals. The matrix Σ̂0

uiui

estimated by eq. (74) can be employed in eq. (69) to approximate the variance
components. Next, we follow equations (50) - (59) except of updated eq. (51).
The variance components (σ̂2

ai
)(1), (σ̂2

bi
)(1) are estimated according equations (61),

(62) assuming the weighting of each coordinate of ε̂
(0)
l,m ∈ R2 by diagonal values of

Σ̂0
uiui
∈ R2×2 as in eq. (70). This approach for affine regions removes the influence

of surrounding pixel intensities that are not used in keypoint position estimation
and compensates for image noise σn distortion by applying various differentiation
Gt and smoothing Gs kernels for individual keypoints.

6.3 Evaluation

In this evaluation section, we compare the proposed feature point noise estima-
tors. Since the developed approaches have not yet been published, we present only
a visual comparison highlighting the differences between the individual methods
rather than a more in-depth statistical verification, which will be the subject of a
future work. As our focus is on positional noise estimation, which is sensitive to
distortions, we eliminate any other sources of deviations from the assumed math-
ematical model, such as radial distortion. To minimize the reprojection errors
caused by radial distortion, it is necessary to choose a suitable camera model Mi

and calculate the intrinsic camera parameters, including K(i) and θ
(i)
rd , in advance.

The authors of Förstner [60] used a polynomial distortion model with two parame-
ters M2|0 to calibrate the camera and rectify captured images to a pinhole camera
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Figure 7: The vizualization of the sparse reconstruction and images captured by
Samsung S10e camera device for the Library dataset. This dataset consist of 8
cameras and 4137 points triangulated out of 15103 utilised observations.

model M0|0. In our experiments, we used the same camera models and Newton’s
method with numerical differentiation using central differences to undistort images,
i.e., utilizing the COLMAP [8] undistortion module. The next step is to detect
and describe feature points in the undistorted images using a scale-independent
detector, such as the DoG [61] or MSER [25] detector, which provides a scale for
each keypoint. The feature points allow the sparse reconstruction pipeline, such
as COLMAP, to calculate the 3D points and camera poses. The reconstruction
θ̂ is optimized with the approximate initial covariance matrix Σ0

uu = σ2
0E2N and

the approximate noise variance factor σ2
0 = 1 by bundle adjustment, as described

in Agarwal [133]. This allows us to obtain θ̂ as close as possible to the unknown
ground truth θ. The majority of the remaining reprojection errors ε̂ = u− û can
be attributed to inaccuracies of the detector. This section starts with a description
of the experiments to visualize individual noise models of keypoints on a simple
dataset. We show the differences between covariance matrices estimated by using
the circular and affine regions.

The dataset for evaluation of different noise models of keypoint accuracy are
composed of: (1) undistorted images that are registered in the reconstruction θ̂,
(2) feature points that are marked as inliers, i.e., points that have exactly one
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Figure 8: This example show affine regions detected by the COLMAP reconstruc-
tion pipeline. We calculate the circular regions as the geometric mean of the
standard ellipse semiaxes lengths, which can be obtained as the Frobenius norm
||Aui ||F multiplied by a factor of 1/

√
2. The image patches corresponding to these

regions are used to estimate the covariance matrices of the keypoint positions.

related tuple in the index set S, and (3) the reconstruction called θ̂ that consist
of 3D points, camera intrinsic and camera extrinsic parameters.

The composition of the dataset was as follows: we first performed intrinsic cal-
ibration for each physical camera by capturing a set of images of the checkerboard
pattern and computing the M2|0 model parameters using the Computer Vision
Toolbox in Matlab. Next, we applied undistortion to the dataset images using
Newton’s method with numerical differentiation and central differences, which is
implemented in COLMAP. We then performed sparse reconstruction to find the
inlier keypoint correspondences between images and calculate the camera extrinsic,
using COLMAP. Finally, we optimized the sparse reconstruction with the assump-
tion of the isotropic homogeneous noise model of the keypoints positions by Bundle
Adjustment using Ceres Solver.

The individual keypoint noise models are visualized on a created small dataset
comprising 8 cameras and 4137 triangulated points out of 15103 keypoints, as
shown in Fig. 7. Keypoints with reprojection errors larger than two pixels, com-
prising around 6% of the keypoints with the largest residuals, were filtered out.
The reconstruction software extracts keypoints with their associated affine regions,
defined by the keypoints ui at the center and the matrices Aui ∈ R2×2 transforming
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the unit circle to the ellipse that bounds the affine region, as visualized in Fig. 8.

To compare the consistency of estimated uncertainties for individual keypoints
across multiple images, an image pair with significant viewpoint and positional
change was manually selected, and all the estimated noise models were plotted for
each tenth inlier correspondence seen in both images, as shown in Fig. 11. The
covariance matrices of keypoints are visualized using five times up-scaled standard
ellipses to be visible for all noise models. The mean variance factor for the isotropic
homogeneous noise model is σ̂2

0 = 0.922, calculated according eq. (49).

For the isotropic inhomogeneous noise model, the noise variance factor was
assumed for each keypoint. Equations (56), (61), and (62) were used to estimate
the empirical equation σ̂2

u = 0.7822 + (0.036 su)
2 for our sample dataset. Hence,

we adopted the same approach as Förster [60] and refrained from evaluating the
iterative refinement of variance components after bundle adjustment optimization
with reweighting reprojection errors in order to ensure consistency of results. This
experiment result in observation that the parameters empirically found in [60] may
not be universally applicable to other camera devices and datasets.

The next experiments focus on the evaluation of an anisotropic inhomogeneous
noise model. Fig. 11c show the covariance matrices calculated according to eq. (68),
i.e., without the correction of the expectation of squared weighted residuals. This
estimate and the one in Fig. 11d assumed circular regions and isotropic kernel Gs
weighting individual contributions of the squared smooth image gradients to the
structure tensor. Nevertheless, the second approach in Fig. 11d estimate robustly
the initial variance components of function σ2

ui
(s2
ui

) by normalizing the reprojection

errors according eq. (61). We assigned the normalized errors ŷ(0)
ui

to thirty bins
according to their related feature point scales and estimated standard deviation
for each bin using eq. (62). It results in thirty pairs of mean scale (of each bin) and
related standard deviation (of the keypoint). The function σ2

ui
(s2
ui

) was realized by
fitting the fifth-degree polynomial to these pairs. We use the estimated function
to plot the standard ellipses in Fig. 11d. A similar approach, using affine regions
and anisotropic kernel weighing the contributions to structure tensor, is visualized
in Fig. 11e. Detailed visualization of covariance matrices for different noise models
and kernels weighing the contributions to structure tensor is in Fig. 12.

The last experiment focuses on the iterative reweighting of the squared repro-
jection errors according to eq. (59). In each iteration, the covariance matrices
are recomputed and utilized to optimize the reconstruction in BA. This approach
leads to such covariance matrices that the expectation of the weighted squared
reprojection errors equals one. For this purpose, we employed the initial estimate
of covariance matrices according to eq. (74). Next, we calculated the variance
components, composed the covariance matrix, and utilized it in the BA. We per-
formed twenty iterations of this refinement. However, the multiples of covariance
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Figure 9: The visualization of estimated anisotropic inhomogeneous noise of affine
regions using the iterative reweighting of the squared reprojection errors according
to eq. (59).

components related to individual covariance matrices converged in five steps of
this process. As we directly followed the eq. (59), each keypoint assumes its own
variance components. Therefore, we were looking for 2N weights of N keypoints,
which appeared prone to overfitting. The visualization of estimated covariance
matrices, i.e., the standard ellipses, is in Fig. 9, and 10. The clustering w.r.t.
similar scales, i.e., estimation of weights for sets of keypoints, may be a direction
for future research.

Figure 10: The detail of estimated standard ellipses of anisotropic inhomogeneous
noise of affine regions using the iterative reweighting of the squared reprojection
errors according to eq. (59). All the standard ellipses are five times up-scaled.
This figure shows the same keypoints as Fig. 12.
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(a) Estimated isotropic homogeneous noise

(b) Estimated isotropic inhomogeneous noise

(c) Estimated anisotropic inhomogeneous noise up to scale - circular regions

(d) Estimated anisotropic inhomogeneous noise - circular regions

(e) Estimated anisotropic inhomogeneous noise - affine regions

Figure 11: The visualization of different noise models on a pair of images from the
Library dataset. All the standard ellipses are five times up-scaled. Fig. 12 shows
the visualization of individual keypoint covariance matrices.

53



Region IH II Gs AI circle GS AI affine

Figure 12: The visualization of keypoints and their covariance matrices for different
noise models. All the standard ellipses are five times up-scaled. The first column
show detected keypoint and related circular and affine regions. The abbreviation:
“IH” is isotropic homogeneous noise, “II” is isotropic inhomogeneous noise, Gs is
the isotropic Gaussian kernel, “AI circle” is anisotropic inhomogeneous noise using
the weights Gs, GS is the anisotropic Gaussian kernel, and “AI affine” is anisotropic
inhomogeneous noise using the weights GS.
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7 Measurement transformation uncertainty

The uncertainty of keypoints can be estimated using the linearized model of tem-
plate matching. However, as far as we know, no algebraic equation for propagation
of uncertainty to the feature point scale, orientation, or sheer has not been pub-
lished yet. One possible way is to follow the approach derived for keypoints, i.e.,
express the uncertainty propagation from the linearized model of the template
matching. However, this is challenging because of the complicated relationship
between scale space, feature point orientation, and an image template. Fortu-
nately, we can propagate the uncertainty from the opposite direction, from the
transformations of measurements. For example, we can estimate the positional
residuals of a keypoint by transforming its location in the first image to the second
image using the ground truth transformation and then measuring the residual with
respect to the corresponding keypoint in the second image. By collecting enough
residuals, we can estimate the standard deviation of the positional transformation.
Likewise, we can use this approach to calculate the standard deviations of the scale
and orientation transformations. This approach involves a large set of ground truth
transformations and related measurements. While the propagation from measure-
ment transformations to measurements is straightforward (mentioned at the end
of this section), we mainly focus on the steps to determine the bias and variance
of angular, scale, and positional transformations of detected correspondences.

Starting from a large dataset of homographies, the normalized homography im-
plied by the l-th plane and transformation from camera Pj to Pk is expressed as
Hkj = Rkj − (tkjn

>
l )/dl, where nl ∈ R3 is the plane normal, and dl is its intercept.

Correspondences are denoted as (ui, φi, si,u
′
i, φ
′
i, s
′
i) where φi ∈ [0, 2π) is the SIFT

feature orientation, si ∈ R is the scale and the prime symbol denotes measurements
in the second image. A reference similarity transformation (4 DoF) Ãi is estimated
in the vicinity of the keypoint pair derived from H̃kj as in Barath [121]. Therefore,
we have a unique affinty transformation of each correspondence of feature points.
While the reference translations t̃ui and scale ratios r̃uican be easily determined
from H̃kj and Ãi, the determination of the reference rotations α̃ui requires care.
There are two approaches to obtain reference rotations: (1) comparing direction
vectors d(φ′i) = [cos(φ′i) sin(φ′i)]

> in the second image with the transformed direc-
tion d(φi) = [cos(φi) sin(φi)]

> in the first image using a local reference affinity Ãi,
and (2) deriving a local rotation from the reference H̃kj. The steps to extract the
reference transformations are as follows:

1. approximate the projective transformation H̃kj by a local affinity Ãi ∈ R2×2

2. decompose Ãi into scale ratio r̃ui , rotation angle α̃ui , and two shears p̃ui ∈ R2
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3. estimate the rotation angle between directional vectors d(φ′i), Ãid(φi)

As shown, there are several approaches to derive the reference angular transforma-
tion α̃ui . We explored calculating it as the angle between the directional vectors
6 (d(φ′i), Ãid(φi)), as well as three possible decompositions of Ãi: QR, SVD, and ex-
ponential decomposition (additive decomposition of exponent B̃i of Ãi = exp(B̃i)).
Each of these methods leads to different reference rotations because α̃ui is affected
by the shears p̃ui in Ãi. When the shears are small, all of the methods yield similar
results. The magnitude ||p̃ui ||

2 of the shears can be approximated by the condi-

tion number cond(Ãi). In our evaluation, we assume only Ãi transformations with a
condition number smaller than a chosen threshold. We then compare the reference
transformations with the measured ones to estimate their uncertainty.

7.1 The positional transformation

The symmetric positional residual of each keypoint pair depends on the mean
reprojection error

εui =
√

(|u′i − H̃kj(ui)|22+|ui − H̃−1
kj (u′i)|22)/8. (75)

Dividing the root mean squared error (RMSE) by
√

8 leads to a conservative
estimate of εui and related standard deviation σi of all coordinates of the key-

points ui =
[
ui1 ui2

]>
and u′i =

[
u′i1 u′i2

]>
. Hence, we assume E(uiu

T
i ) =

E(u′i(u
′
i)
>) = σ2

i I2, which also holds for the errors ei = ui − E(ui) and e′i =
u′i − E(u′i). Linearizing ui − h2a(Hkj a2h(u′i)) leads to ei − Ai(e

′
i), and similarly

for the second term. Thus, the RMSE, i.e., the expression under the squareroot
in (75) is linearized to

Ωi = ||ei − Ai(e
′
i)||22+||e′i − A−1

i (ei)||22 (76)

Now, we calculate the expectation of E(Ωi) and obtain

E(Ωi) = E
(
(ei − Ai(e

′
i))
>(ei − Ai(e

′
i)) +(e′i − A−1

i (ei))
>(e′i − A−1

i (ei))
)

(77)

= E
(
e>i ei + (e′i)

>A>i Aie
′
i +(e′i)

>e′i + e>i A
−>
i A−1

i ei
)

(78)

With tr(RS) = tr(SR), thus aTSa = tr(aTSa) = tr(SaaT) and therefore

E(Ωi) = E
(
e>i ei + e′i

>
A>i Aie

′
i +e′i

>
e′i + e>i A

−T
i A−1

i ei

)
(79)

= E
(

tr(eie
>
i ) + tr(A>i Aie

′
ie
′
i
>

) +tr(e′ie
′
i
>

) + tr(A−Ti A−1
i eie

>
i

)
(80)

= tr(E(eie
>
i )) + tr(A>i AiE(e′ie

′
i
>

)) + tr(E(e′ie
′
i
>

)) + tr(A−Ti A−1
i E(eie

>
i ))(81)

= tr(I2)σ2
i + tr(A>i Ai)σ

2
i + tr(I2)σ2

i + tr(A−Ti A−1
i )σ2

i (82)

= (4 + tr(A>i Ai) + tr(A−Ti A−1
i ))σ2

i . (83)
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If we focus on the eigenvalues λ1,2(ATi Ai), the equation can be rewritten to

E(Ωi) = (4 + λ1 + λ2 + 1/λ1 + 1/λ2)σ2
i ≥ 8σ2

i (84)

since x + 1/x = (1 − x)2/x + 2 ≥ 2 for x > 0. Hence, if λ1 = λ2 = 1, thus for a
pure rotation, the value ε2ui is an unbiased estimator for σ2

i .

7.2 The scale transformation

The scale transformation is evaluated using the ratios rui = s′i/si of a keypoint
pair. Its ratio ∆rui = rui/r̃ui to the reference ratio

r̃ui =

√
|Ãi| (85)

should lead to E(∆rui) = 1. Further, we use a weighted log-ratio, measured as
ρui = log(∆rui)/r̃ui which should follow E(ρui) = 0, and takes into account the
intuition, that larger scales are less accurate.

7.3 The angular transformation

The angular transformation derived from the measurements equals αui = φ′i − φi.
Having the reference angular transformation α̃i, its difference to the measured one
is given by ∆αi = α̃i − αi.

Comparing direction vectors. The directional vector dui = [cos(φi) sin(φi)]
>,

which realize the orientation of the first keypoint, can be transformed into the
second image by multiplying it with the local approximation of the affinity trans-
formation

d̃′ui = Ãidui . (86)

The matrix Ãi ∈ R2×2 does not include the projective part, and enables us to
capture the similarity transformation assumed by the detector up to the shears.
To obtain the angle in the interval [−π, π], we can use the following equation

∆αdi
= 6 (d′ui , d̃

′
ui) = atan2(||[d′ui , d̃

′
ui ]||, (d′ui)

>d̃′ui). (87)

Partitioning of an affinity. We assume that the matrix Ãi ∈ R2×2 locally ap-
proximates the homography H̃kj ∈ R3×3. The goal of comparing SIFT orientations
is to determine the rotation component R̃ui of the affinity Ãi and compare it to the
angle between the directions of corresponding keypoints.

We consider three alternatives for determining the rotational component of Ãi,
which are as follows:
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1. QR-decomposition

2. SVD-decomposition

3. Exponential decomposition

1) Rotation from QR-decomposition of an affinity Ai. Assuming that the affinity
is a concatenation of a shear matrix Sui and a subsequent rotation with Rui

Ai = RuiSui (88)

the classical QR-decomposition is defined as

Rqr,Ai
:= Rui with [Rui , Sui ] = qr(Ai) . (89)

In case the affinity is defined by the reverse sequence, i.e.

Ai = SuiRui (90)

the QR decomposition of the transposed matrix must be taken

Rqr,A>
i

:= R>ui with [Rui , Sui ] = qr(A>i ) . (91)

If there are no shears, i.e., the shear matrix is a scaled unit matrix, the two rota-
tions Rqr,Ai

and Rqr,A>
i

are the same, otherwise, they differ.

2) Rotation from SVD-decomposition of Ai. Assuming that the affinity is decom-
posable as two rotations sandwiching an individual scaling,

Ai = UuiSuiV
>
ui

with Sui =

[
sui,1 0

0 sui,2

]
, (92)

where the shears are represented by the rotation Vui and the ratio sui,1/sui,2. The
SVD yields the rotation

Rsvd,Ai
:= UuiV

>
ui

with [Uui , Sui , Vui ] = svd(Ai) . (93)

Transposing Ai does not change the resulting rotation. However, the rotation re-
sulting from the SVD-decomposition is only identical to that of the QR-decomposition
if the affinity is a scaled rotation.

3) Rotation from an exponential decomposition. Another approach for deriving
the rotation component is by using the matrix exponential. The affinity Ai can be
written as an exponential of a matrix Bi, i.e.,

Ai = eBi (94)
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If the matrix Bi is zero, i.e., Bi = 0, then the affinity is a unit transformation. We
can now decompose the exponent additively using the following form

Bi =
∑
j

pijBij (95)

where the four basic 2× 2 matrices are

Bi1 =

[
1 0
0 1

]
, Bi2 =

[
0 −1
1 0

]
(96)

Bi3 =

[
0 1
1 0

]
, Bi4 =

[
1 0
0 −1

]
. (97)

Hence
Ai = epi1Bi1+pi2Bi2+pi3Bi3+pi4Bi4 . (98)

If we consider each summand individually, the four parameters correspond to: (1)
scaling with log pi1, (2) rotation by pi2 [rad], (3) first shear, which is opposite
scaling of axes, and (4) second shear, which is opposite rotation of axes. The
rotational component can be obtained using the relation

Rui = exp(pi2Bi2) . (99)

Furthermore, for the first shear, we explicitly have

exp

([
0 pi4
pi4 0

])
=

[
e−pi4/2 + epi4/2 epi4/2 − e−pi4/2

e−pi4/2 − e−pi4/2 e−pi4/2 + epi4/2

]
(100)

qi4=epi4/2

=

[
qi4 + 1/qi4 qi4 − 1/q4
qi4 − 1/qi4 qi4 + 1/qi4

]
. (101)

This representation exhibits high symmetry, with the additive terms being invari-
ant with respect to their sequence. Furthermore, the scaled rotation is independent
of the presence of shears. However, since the exponent of two matrices is the prod-
uct of the two matrices only if they commute, that is

exp(A + B) = exp(A) exp(B) only if AB = BA , (102)

the interpretation of the elements in the exponent is not independent of the pres-
ence of the other elements. It is only possible to exchange a common scaling with
the other components, as is the case for scaled rotation. Additionally, we can
define the rotational component using (99) and obtain pi2 as

pi2 = (Bi(2, 1)−Bi(1, 2))/2 with Bi = log(Ai) (103)
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where log(Ai) is the matrix logarithm of Ai. Therefore, we can identify the existence
of shears by checking whether

d2
s = ||

[
pi3 pi4

]
||= p2

i3 + p2
i4 = 0 (104)

Additionally, since a scaled rotation has condition number equal one, we can use
the condition number to identify the lack of shears, namely if cond(Ai) = 1. For
not too large shears, the condition number and the degree of shears d2

si
are ap-

proximately the same

d2
si
≈ cond(Ai) . (105)

7.4 Evaluation

We will demonstrate the steps to determine the bias and variance of angular, scale,
and positional transformations on SIFT feature points. The positional uncertainty
of SIFT keypoints is known to be approximately 1/3 pixel (see Förstner [60] p.681,
and Laebe [134] Tab.6). However, in our experiments, we obtained an estimated
standard deviation of σ̂ui ≈ 0.67 pixels, which is a factor of two larger than ex-
pected. This could be due to accepting small outliers. Currently, there is no
published research on the uncertainty of the orientations and scales. However, the
OpenCV implementation of the SIFT detector uses an orientation histogram with
36 bins, where the size of each bin is 10 degrees. Assuming an average standard de-
viation of less than three times the rounding error (10◦/

√
12 ≈ 2.89◦) – i.e., three

times the standard deviation of a uniform distribution in the range [−5◦,+5◦]
– the average standard deviation of the angular difference αui is approximately
σ̂αui

≈ 3 · (2.89 ·
√

2) ≈ 12◦. While this is a quite large uncertainty, it can be used
in cases where the rotation between keypoints is large. The augmenting factor 3
is meant to roughly take into account other effects than the rounding. In prac-
tice, the experiments we conducted on 4.3M correspondences with cond(Ai) < 1.2
lead to an estimate of the standard deviation of the SIFT orientation, σ̂αui

, of
approximately 7.9◦. This corresponds to

σ̂φi = 7.9◦/
√

2 = 5.5◦ . (106)

Empirically, the OpenCV implementation of the SIFT detector yields a standard
deviation of σ̂ρi = 0.51 for scale estimates. Therefore the scales from the detector
may deviate on average by a factor of 1.6 ≈ exp(0.51) in both directions.

7.4.1 Composition of reference transformations

To estimate the uncertainty of the feature point transformations between images,
a large-scale dataset of ground truth (GT) transformations and corresponding
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measured feature points is required. We assume that the GT transformations are
given by the affinity matrices estimated from homographies. To calculate these
homographies, we first identify all significant planes in 3D from the reconstruc-
tions of the 1DSfM dataset introduced by Wilson [135], which we reconstructed
using COLMAP. To ensure the accuracy and coherency of the reconstructions, we
manually checked their quality and filtered the degenerated ones. The scales of
the reconstructions were obtained using the ruler tool of Google Maps [136].

To extract keypoints, we utilized SIFT features introduces in Lowe [61] as
implemented in OpenCV [137] with RootSIFT [138] descriptors. The 3D planes
were then segmented using the Progressive-X+ algorithm from Barath [139]. We
collected homographies that link two views of a real 3D planar surface, consistent
with the camera motion, and estimable from their GT correspondences using the
standard normalized DLT algorithm described in Hartley [33]. Correspondences
are considered inliers if the reprojection error

εui = ||u′i − h2a(Hkj a2h(ui))
>||2 (107)

is smaller than a δ-pixel threshold. The operators a2h and h2a convert vectors
between their affine and homogeneous representation. We consider only homogra-
phies with more than 10 inliers and reject those estimated by the DLT algorithm
H′kj (decomposed by Malis [140]) with an error εR′kj > 3◦ or εt′kj > 3◦, expressed as

εR′kj = (180/π) arccos
((

tr
(
R′kjR

>
kj

)
− 1
)
/2
)

(108)

εt′kj = (180/π) arccos(t>kjt
′
kj)(|tkj||t′kj|) (109)

The GT dataset used for estimating the uncertainty of transformations includes 1k
planes observed in 10k images, resulting in roughly 226k homographies and 6.1M
correspondences. Further details on the composition of the dataset and the eval-
uation of state-of-the-art homography estimation methods can be found in [68].

7.4.2 The positional transformation uncertainty

The positional transformation uncertainty is dependent on the symmetric posi-
tional residual of each keypoint pair, which is related to the mean squared re-
projection error, as shown in equation eq. (75). Figure 13 shows the histogram
of residuals for 6.1 million keypoint pairs. Additionally, Förstner [60] p.681, and
Zeisl [141] eq. (15) have shown that the standard deviation of the keypoint depends
on the detector scale. Therefore, we suggests that the positional transformation
error εui is also dependent on keypoint scales si and s′i. To further investigate this
dependence, we clustered the symmetric positional residuals based on related si
and s′i scales, and measured the standard deviation for individual bins. The results
are shown in Figure 14.
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Figure 13: The residuals εui of 6.1M keypoint pairs. The right histogram shows the
logarithmic scale of the occurrence to visualize the distribution of the residuals.
Measured standard deviation σ̂ui ≈ 0.67 pixels. The STD is a factor two larger,
than expected, which might result from accepting small outliers.

Figure 14: The figure shows the stan-
dard deviation of εui for individual com-
binations of keypoint scales si and s′i.
The plot clearly demonstrates the de-
pendence of reprojection accuracy on
the scale of the related keypoints.

Figure 15: The plot shows the approx-
imate effect of the condition number of
the affinity matrix on the angular error
and scale difference.
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Figure 16: The histogram of the scale transformation ratio ∆rui and the weighted
log-ratio ρui on 5.6M keypoint pairs.

7.4.3 The scale ratio uncertainty

We exclude cases where the affinity matrix has a condition number cond(Ai) > 1.5,
as the shears are assumed to have too large an impact on the scales. We focus
on analyzing cases with small scale ratios, i.e., values r̃ui ∈ [0.5, 2]. This interval
contains 99.62% of the keypoint pairs i.e., the scale statistics of the remaining
5.6M keypoint pairs are shown in Figure 16.

7.4.4 The angular transformation uncertainty

To evaluate the rotations ∆αui of the keypoint pairs, we restrict the samples to
those with condition number cond(Ai) < δcond. The dataset contains approximately
4.3M of correspondences for δcond = 1.2, and 5.8M correspondence for δcond = 1.5.
The total number of correspondences is 6.1M. In both examples, the number of
samples allows a reliable estimate of the feature point’s uncertainties. For small
slopes of the 3D plane normal seen by stereo pair, the condition number of the
affinity

cond (AshearAscale-diff) = cond

([
1 a
0 1

] [
1 + s 0

0 1

])
≈ 1 +

√
s2 + a2. (110)

The visualization of the mean error caused by the shears for individual condition
numbers of the affinity matrix is in Fig. 15. The analysis of the shears describes
their influence on estimated standard deviations of feature points. We expect
approximately 3.7◦ of angular error, and 7% of scale difference at mean for δcond =
1.2. For δcond = 1.5, the mean deviations are 8◦ of angular error, and 18% of scale
difference. Note that most of the correspondences in the dataset have an affinity
matrix with a smaller condition number, see Fig. 17. Therefore the effect of sheers
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Figure 17: The histogram of condition
numbers of Ai. Approx. 70% of samples
have condition number smaller than 1.2
and 95% of them have condition num-
ber smaller than 1.5.

Figure 18: The average error intro-
duced by sheers of Ai for correspon-
dences with condition number smaller
than the specified threshold.

will be smaller on average when we assume all correspondences up to selected
threshold δcond. The mean average influence of sheers can be approximated by
weighting individual errors by their relative number of occurrences. Therefore,
we expect approximately 1.8◦ of angular transformation error and 2.9% of scale
difference in mean for all samples that fulfill cond(Ai) < 1.2. For cond(Ai) < 1.5,
the mean deviations are 2.8◦ of angular transformation error, and 5.1% of scale
difference, see Figure 18. The effect of changing the condition number threshold
on the angular transformation error ∆αi is the following. For δcond = 1.2, the
standard deviation of the angular transformation is 7.9◦, which corresponds to the
standard deviation 5.5◦. For δcond = 1.5, the angular transformation has a standard
deviation of 8.3◦, which corresponds to the directional uncertainty 5.9◦.

Furthermore, the histogram of the angular transformation error ∆α in Fig. 19
confirms that for cond(Ai) < 1.2 leads the difference of individual decomposition
methods to similar average residuals as the difference of directional vectors.
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Figure 19: The histogram shows the angular transformation error ∆α plotted
on top of the angles α. The transformation was measured using three different
methods: (1) as the angle between directional vectors, ∆αdirect (eq. (87)), (2)
by subtracting the reference angular transformation decomposed by SVD, ∆αSVD

(eq. (93)), and (3) by subtracting the ground truth angular transformation ob-
tained from the exponential analysis, ∆αlogm (eq. (99)). We considered 4.3M
correspondences with cond(Ãi) < 1.2, and the standard deviation is σ̂α ≈ 7.9◦,
which is approximately two times the rounding error.
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8 Uncertainty in SfM

SfM estimates the reconstruction θ̂ from feature points. In the scope of this sec-
tion, we describe new techniques used to propagate the uncertainty of the feature
points (described previously) into the uncertainty of estimated solutions of ge-
ometrical problems. The two main tasks are discussed: 1) the propagation of
uncertainty into the geometric solutions for minimal problems (e.g., an estimate of
the uncertainty of the homography matrix), and 2) the propagation of uncertainty
into the reconstruction using the constraints of a projection equation. The uncer-
tainty of estimated parameters allows for better analysis of degenerate solutions
and the determination of inaccurate reconstruction parts. Moreover, we employ
the uncertainty estimates in the applications described in the following Sec. 9.

8.1 Uncertainty of minimal problems

Estimating the geometric relationship between two cameras, such as homography
matrix, is fundamental in computer vision. Each relation between cameras is
described by a set of constraints that the geometrical model must fulfill. So-called
minimal solvers estimate the solutions consistent with a related set of constraints
from a minimal number of correspondences. Most minimal geometric problems
in computer vision are in form f(x,y) = 0 where y realize observations and x
parameters. The classical variance propagation for implicit functions leads to

Σx,x = B−1AΣyyA
>B−> with A =

∂f(x̂, ŷ)

∂y
and B =

∂f(x̂, ŷ)

∂x
. (111)

The covariance matrix Σyy refers to the input measurements (e.g., keypoint coor-
dinates or affinity correspondences), and the covariance matrix Σxx refers to the
model parameters.

However, minimal problems usually have the number of constraints f smaller
than the number of model parameters, and hence the matrix B cannot be inverted.
We propose redefining the implicit function by adding constraints h(x) = 0 be-
tween the model parameters to address this issue. In other words, we use the
extended implicit function with their Jacobians, given by[

f(x,y)
h(x)

]
= 0 with A =

[
∂f/∂y
0>

]
, B =

[
∂f/∂x
∂h/∂x

]
. (112)

By adding constraints h(x) = 0 between the model parameters, we obtain exactly
the same number of constraints as parameters, which ensures that the matrix B is
regular (except for critical geometric configurations).

However, one more step is needed to have a covariance matrix comparable to
the one estimated by MC simulation. The theoretical covariance matrix Σ̄T := Σ̂xx
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cannot be directly compared with any empirically estimated covariance matrix Σ̄E,
as Σ̄T is singular while Σ̄E is usually regular. The empirical covariance matrix can be
obtained from the outputs of the minimal solver by repeatedly distorting the inputs
based on an input covariance matrix of the observations. To obtain comparable
covariance matrices ΣT ≈ ΣE, we propose to regularize both by projecting them onto
the orthonormal basis of the column space of the theoretical covariance matrix Σ̄T.
Such transformation can be calculated by finding the nullspace of the transposed
nullspace of Σ̄T, i.e.,

Jreg = null(null(Σ̄T)T) . (113)

The matrix Jreg project both covariance matrices to the desired orthonormal basis
as follows

ΣT = J>regΣ̄TJreg (114)

ΣE = J>regΣ̄EJreg . (115)

The following paragraphs provide a list of the minimal set of constraints f , h used
by minimal solvers utilized in experimental evaluation.

8.1.1 Homography estimation

Estimating planar homography H ∈ R3×3 is a well-studied problem, with simple
linear solutions from point and affine correspondences. Here, we assume that affine
correspondence is a region defined by its center ui and shape Aui ∈ R2×2. Since
each PC gives two linear constraints on H, and each AC gives six linear constraints
on H, the minimal number of correspondences necessary to estimate the unknown
homography is either 4PC or 1AC+1PC. Both the well-known 4PC [33] (the DLT
algorithm) and the 1AC+1PC [120, 121] solvers solve a system of eight linear
equations in nine unknowns and are therefore equivalent in terms of efficiency.
Assuming two ACs, one can choose another subset of constraints used for the
uncertainty propagation, i.e., 1AC + rotation and scale of the second AC instead
of one PC.

To propagate the uncertainty, we add a constraint on the parameters H in the
form hH = ||vec(H)||2−1 = 0 for both approaches. This constraint avoids the
trivial all-zeros solution.

8.1.2 Fundamental matrix estimation

The problem of estimating the relative pose of two uncalibrated cameras, i.e.,
estimating the fundamental matrix F ∈ R3×3 can be computed by a 7PC solver, see
Hartley [33]. The fundamental matrix F has seven degrees of freedom, since it is a
3×3 singular matrix defined up to scale. Each epipolar constraint, eq. (35), for m ∈
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{1, . . . , 7} gives one linear constraint on F. Therefore, we have 7 constraints from
7PC and, at the same time, 9 parameters of F. The second approach we employ is
using 2AC + 1PC correspondences. Each AC gives three linear constraints on the
epipolar geometry as in Barath [142]. The solver itself rewrites the constraints in
eq. (116), and eq. (117) in a matrix form as MFvec(F) = 0, to find a 2-dimensional
null-space of the matrix MF. The unknown fundamental matrix is parameterized
as F = λF1 + F2, where F1 and F2 are matrices created from the 2-dimensional
null-space of MF. The λ is found to fulfill the constraint det(F) = 0. In other
words, the solver finds a solution of a polynomial of degree three in one unknown
λ.

The uncertainty propagation employs seven linear constraints, i.e., six from
2AC and one from a PC, and two constraints on the fundamental matrix. The
constraints are (1) for three-point correspondences

fm =
[
u>2,m 1

]
F

[
u1,m

1

]
= 0 , (116)

(2) two pairs of affine constraints ( [142] eq. (8) )

f i = [E2|02] F

[
u1,i

1

]
+ [A−>ui |02] F>

[
u2,i

1

]
= 0 , (117)

(3) the two constraints hF := [hF,1, hF,2]
> of the parameters

hF,1(F) = det(F) = 0 (118)

hF,2(F) = ||vec(F)||2−1 = 0 . (119)

8.1.3 Essential matrix estimation

The problem of estimating the unknown essential matrix E ∈ R3×3, which describes
the relative pose of two calibrated cameras, has five degrees of freedom and nine
parameters. There are two main approaches to estimate E: the 5PC solver intro-
duced by Nister [34] and the 2AC solver from Brath [122] or Eichhardt [74]. The
5PC solver uses five point correspondences, each providing one linear constraint
on E. The 2AC solver, on the other hand, utilizes two affine correspondences,
each giving three linear constraints on E as in [122]. Thus, two ACs provide more
constraints than degrees of freedom, resulting in an over-constrained system of
equations. One approach is to use just five out of six constraints, while another
approach utilized in experimental evaluation is to calculate an over-constrained
system of equations [122].

We describe two possible methods to propagate the uncertainty when using PCs
and one for ACs. One straightforward solution is to use the five PC constraints
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described in eq. (37) and add four constraints hE = [hE,1, hE,2,hE,(3,4)]
T on vec(E):

hE,1(E) = det(E) = 0 (120)

hE,2(E) = ||vec(E)||2−1 = 0 (121)

hE,(3,4)(E) = 2EE>E− tr(EE>)E = 0 . (122)

The vector hE,(3,4)(E) represents the nine trace constraints of E, of which only two
are independent. In general, we can choose any two of these nine constraints (with
the exception of singular cases like E = [1; 0; 0]×) so that the constraints in hE are
independent.

The second approach for estimating the relative pose of two calibrated cameras
involves using a minimal set of parameters, such as a unit translation (baseline)
vector t21 ∈ R3 and the Euler vector evec ∈ SO(3). For this parametrization,
we assume the essential matrix as defined in eq. (38), and the rotation matrix
R21 = Re(evec) is composed from the Euler vector evec as follows:

Re(evec) = E3+(1−cosαe) [evec]
2
×+sinαe [evec]× where αe =

√
e>vecevec . (123)

This minimal representation leads to five points constraints and one constraint of
the baseline

ht(t21) = ||t21||2−1 = 0 . (124)

The minimal problem using 2AC has three constraints for each correspondence.
The PCs are realized as in eq. (37), and two constraints of AC are provided by
eq. (9) and (10) in [142]. Next we assume the constraint eq. (124) of t21. In
sum, this leads to six unknowns (i.e., t21 ∈ R3, evec ∈ R3) and seven constraints.
Therefore, we suppress one equation of the form eq. (10) in [142] to have the same
number of constraints and parameters.

8.1.4 Essential matrix + focal length estimation

The essential matrix with a focal length has six degrees of freedom and nine pa-
rameters. It can be described as Ē = K̄−>2 E K̄−1

1 , where

K̄l =

fl 0 0
0 fl 0
0 0 1

 (125)

is the l-th camera calibration matrix assuming focal length fl and principal point
upp,l = 02. We assume either 6PC or 2AC as input. The point constraints are the
same as for the essential matrix eq. (37). Further, we used the constraints hF,1,
hF,2 that are the same as for the fundamental matrix and hEf that corresponds to
eq. (18) from [143].
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8.2 Uncertainty of reconstruction

Estimating the uncertainty of a reconstruction (e.g., camera poses and 3D points)
is a critical tool for evaluating its quality, guiding the reconstruction process, and
comparing the optimal setup of hyper-parameters. To estimate the uncertainty
of the reconstruction θ, we can propagate the uncertainty from the feature points
to the estimated solution of the relative pose problem. Then, we can propagate
it further to the 3D points using triangulation constraints and, finally, from the
3D points to the camera poses using the absolute pose solver and its geometric
restrictions. However, we can simplify this process by employing the geometric con-
straints between 3D points, camera poses, and keypoints, as in bundle adjustment
(41). This section builds on the camera model notation and bundle adjustment
derivation covered in the key concepts. We provide a guide for propagating uncer-
tainty from keypoints to the parameters of the large-scale reconstruction.

Let us start from the normal equation, eq. (47), in a form

M∆θ = m (126)

M = J>Σ−1
ε̂,ε̂ J m = J>Σ−1

ε̂,ε̂ (û− u) . (127)

The coordinate system of the reconstruction is defined up to a similarity transfor-
mation with seven degrees of freedom, which means that the rank of the Jacobian
matrix J is K − 7. As a result, the Fisher information matrix M ∈ RK×K is
rank-deficient. Following the backward uncertainty propagation of the non-linear
function eq. (20), we can see that the pseudo-inversion of M realizes the covari-
ance matrix of the inner geometry of the reconstruction θ. The next subsections
show two approaches to estimate the pseudo-inversion of M even for large-scale
reconstructions.

8.2.1 Taylor expansion algorithm

The first approach is based on the Taylor expansion (TE) algorithm, which par-
tially corresponds to the Levenberg–Marquardt (LM) algorithm. This approach
solves the inversion of M by adding a damping term, i.e., by assuming M+γEK . We
can denote this as a function of γ, i.e.,

g(γ) = (M + γEK)−1. (128)

Since the damping term introduces some error, the idea is to estimate the inversion
of M using the Taylor series of g(γ) around γ = 0. To achieve this, we need to
compute the i-th derivative of g with respect to γ, which is given by

∂ig(γ)

∂γi
= (−1)i i(M + γEK)−(i+1) . (129)

70



Using the derivative of g(γ), the Taylor series expansion around γ = 0 equal

∞∑
i=0

(
(−γ)i

i!

∂ig(γ)

∂γi

)
(130)

which allows us to express the inversion of M as a sum of recursive functions

g(0) = (M + γEK)−1 +
∞∑
t=1

(
γt

(t− 1)!
(M + γEK)−(t+1)

)
. (131)

Thus, we can substitute Minv = (M + γEK)−1 and calculate M
(t+1)
inv = M t

invMinv,
which involves only matrix multiplications.

8.2.2 Nullspace bounding method

This method assumes additional constrains on the reconstruction, i.e., hθ(θ) = 0.
In general, we can assume any constraints that fix the gauge of the covariance
matrix. However, to have the uncertainty of inner geometry, we would need to cal-
culate the S-transformation eq. (26) which is computationally challenging. There-
fore, an ideal approach is to fix the whole scene as done in MP inversion. In that
case, the derivative of hθ also equal the nullspace of the column space of J, i.e.,

JHθ = 0 (132)

Using Lagrange multipliers λ, we are minimising the function

g(θ,λ) =
1

2
(J∆θ + û− u)>Σ−1

uu (J∆θ + û− u) + λ>(H>θ θ̂) (133)

which has partial derivative with respect λ equal to zero in the optimum

∂g(θ,λ)

∂λ
= H>θ θ̂ = 0. (134)

Therefore, the constraints can be integrated into the extended normal equation[
M Hθ
H>θ 0

] [
θ̂
λ

]
=

[
J>Σ−1

uu (û− u)
0

]
(135)

and allow us to express the M-P inversion as the inversion of an extended infor-
mation matrix about its nullspace, i.e.[

Σθθ
]

=

[
M Hθ
H>θ 0

]−1

(136)
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The remaining question is how to calculate the nullspace Hθ, which has asymp-
totic complexity is O(K3) for general matrix M. The following text shows how
to utilize the geometrical constraints of the similarity transformation to estimate
the nullspace in O(L) (where L� K). Let us assume a similarity transformation
(θ → θs) that do not change of the projection function, i.e.

p(θ)− p(θs) = 0 (137)

If we assume a small change θ → θs and linearize the function p(θ) at θ̂, the
difference p(θ)−p(θs) remain equal zero. Any such function has its total derivative
multiplied by ∆θ equal zero. Therefore, we obtain the formula

Jθ − Jθs = J∆θ = JHθ = 0 . (138)

Therefore ∆θ equals the nullspace Hθ. In other words, if we find such ∆θ that
does not change eq. (137), we will have the basis of the nullspace Hθ. The order
of parameters in the nullspace directly depends on the ordering of parameters in
θ. We utilize the ordering from eq. (29). Every single camera has parameters in
the order P l =

[
evec,l,C l, fl,upp,l,θrd,l

]
, i.e., the Euler vector, camera center, focal

length, principal point, and radial distortion parameters. The translation can be
expressed form camera center using tl = −Re(evec,l)C l. Further we denote the l-th
camera rotation as Rl = Re(evec,l) for brevity. We can express the parameters after
similarity transformation realized by rotation Rs, translation ts, and scale λs as

Rl,s = RlR
−1
s (139)

C l,s = λsRsC l + ts (140)

Xm,s = λsRsXm + ts. (141)

The similarity transformation does not change camera intrinsic fl,upp,l,θrd,l. There-
fore, we can simplify the eq. (137) by assuming fl = 1, upp,l = 02, θrd,l = ∅, i.e., it
holds that

h2a(Rl(Xm −C l))− h2a(Rl,s(Xm,s −C l,s)) = 02. (142)

This equation is linear in ts and λs and we can write the change ∆Xm, ∆C l as

∆C l = C l −C l,s = C l − λsRsC l + ts (143)

∆Xm = Xm −Xm,s = Xm − λsRsXm + ts (144)

The ∆C l, ∆Xm are submatrices of the basis vectors of Hθ, see eq. (138). Next,
we write the Jacobian J and the nullspace Hθ, both estimated in θ̂, to have better
insight on their structure

J(θ̂) =
∂p(θ̂)

∂θ
=


∂p1

∂P 1

. . .
∂p1

∂P L

∂p1

∂X1

. . .
∂p1

∂XM
...

...
...

...
∂pN
∂P 1

. . .
∂pN
∂P L

∂pN
∂X1

. . .
∂pN
∂XM

 (145)
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and

Hθ(θ̂) =



HtsP1
HRsP1

HλsP1
...

...
...

HtsPL
HRsPL

HλsPL

HtsX1
HRsX1

HλsX1
...

...
...

HtsXM
HRsXM

HλsXM


. (146)

The pn realize the n-th projection equation related to a pair of (l,m) ∈ S. There is
2N rows of Hθ related to the parameters ∆θ = {∆P 1, . . . ,∆P L,∆X1, . . . ,∆XM}
that are changed by seven parameters of similarity transformation, i.e. ts, Rs,
and λs. Thus, one possible way of Hθ calculation is to randomly chose ts, Rs, λs
and utilise the change of θ with respect to individual similarity transformation
parameters, e.g., HtsX1

∈ R3×3 can be found as the change of X1 when changing
ts,1, ts,2, and ts,3 using eq. (144). To simplify this approach, we can linearize
the known pieces of the function ∆θ according to the ts, Rs, and λs parameters.
The differential of ∆θ indicates the direction of the change in θ evaluated at θ̂
that does not affect the projection equation. Therefore, any step in this direction
approximates ∆θ, and we can assume a unit step, equivalent to directly using the
partial derivatives

Hθ =



∂∆evec,1

∂ts

∂∆evec,1

∂evec,s

∂∆evec,1

∂λs
∂∆C1

∂ts

∂∆C1

∂evec,s

∂∆C1

∂λs
∂∆f1

∂ts

∂∆f1

∂evec,s

∂∆f1

∂λs
∂∆up,1
∂ts

∂∆up,1
∂evec,s

∂∆up,1
∂λs

∂∆θrd,1

∂ts

∂∆θrd,1

∂evec,s

∂∆θrd,1

∂λs
...

...
...

∂∆X1

∂ts

∂∆X1

∂evec,s

∂∆X1

∂λs
...

...
...

∂∆Xm

∂ts

∂∆Xm

∂evec,s

∂∆Xm

∂λs



=



03 HRsR1
03

E3 [C1]× C1

0>3 0>3 0
02×3 02×3 0

0(B+D)×3 0(B+D)×3 0B+D
...

...
...

E3 [X1]× X1
...

...
...

E3 [XM ]× XM


. (147)

Note that 03 notation is used for an zero matrix 03 ∈ R3×3, the 03 is the vector
03 ∈ R3, and (B+D) is the number of radial distortion parameter. In general, all
the intrinsic have the partial derivative w.r.t. similarity transformation equal zeros.
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The expression eq. (147) allow us to write the nullspace directly from parameters
θ without any calculation, except for the blocks HRsRl . A skew-symmetric matrix
can approximate the rotation change after the linearization. However, we found it
more numerically stable to calculate it from the Jacobian J and the known part
of the nullspace Hθ according to the eq. (138). The columns of HRsRl blocks are
orthogonal to the rest of the nullspace Hθ and also to the Jacobian J. Therefore,
the multiple of red parts of J and Hθ in Fig. 20 minus the multiple of related green
parts should equal zero matrices. This can be written as

JRHR = B (148)

where all the unknown blocks HRsRl are stacked into a matrix HR ∈ R3L×3, i.e.

HR =

H
Rs
R1

...
HRsRL

 . (149)

The red sub-blocks in Fig. 20 (a), i.e.

J1,l =
∂p1(θ̂)

∂evec,l

J2,l =
∂p2(θ̂)

∂evec,l

J3,l =
∂p3(θ̂)

∂evec,l

(150)

form a block-diagonal matrix JR ∈ R3L×3L

JR = diag

J1,1

J2,1

J3,1

 , . . . ,
J1,L

J2,L

J3,L

 , (151)

and the multiple of the green blocks in Fig. 20 (a), (b) equals −B ∈ R3L×3 matrix.
Finding the solution of eq. (148) can be expressed as

HR = J−1
R B , (152)

and requires only an inversion of L matrices of dimension 3 × 3 on the diagonal
that are multiplied with R3L×3 matrix B, i.e., the asymptotic complexity is a fixed
multiple of number of cameras L instead of K3.

8.2.3 Schur complement method

The damping term γE in eq. (131) and the nullspace bounding in eq. (136) enable
the use of the Schur complement method to compute the inversion of M. In general,
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(a) The Jacobian matrix J

Rs

R1

Rs

R2

evec,1

evec,2

(b) The nullspace matrix Hθ

Figure 20: The internal structure of the matrices J,Hθ using six parameters for
each camera P i, i.e., neglecting the intrinsic parameters. The matrices JR and
HR are composed of the red submatrices of J and red submatrices of Hθ. The
multiplication of green submatrices of J and the green submatrices of Hθ equals
−B, leading to eq. (152).

following method is not applicable when the inverted matrix is rank deficient. As
the steps are the same for both regular matrices that are inverted

(M + γEK)−1 and

[
M Hθ
H>θ 0

]−1

(153)

let us demonstrate the steps for the superior method, namely the nullspace bound-
ing method, which does not require any matrix additions or multiplications after
the inversion to express the covariance matrix of the reconstruction.

The first step in the superior method is to scale the values in M to be in approxi-
mately the same range, which corresponds to choosing an appropriate coordinate
system, such as expressing the focal length in multiples of image width instead of
pixels. Since we are inverting instead of MP inverting, we can extend eq. (136) to
include diagonal matrices Sa and Sb, which scale the values in M, i.e.[

Σθθ
]

=

[
Sa 0
0 Sb

]([
Sa 0
0 Sb

] [
M Hθ
H>θ 0

] [
Sa 0
0 Sb

])−1 [
Sa 0
0 Sb

]
(154)[

Σθθ
]

=

[
Sa 0
0 Sb

] [
Ms Hs
H>s 0

]−1 [
Sa 0
0 Sb

]
(155)[

Σθθ
]

= SQ−1S . (156)
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Figure 21: The internal structure of the matrix QP. The blue dots realize non-zero
values. Each camera is realized by vector P l ∈ R6.

The next step is to permute the columns and rows (i.e. the order of parameters θ)
in the matrix Q to have point parameters followed by camera parameters and the
nullspace [

Σθθ
]

= SP(PQP)−1PS = SP Q−1
P PS . (157)

The matrix P realizes the appropriate permutation. The matrix QP can be de-
composed into three submatrices AP, BP, and DP as vizualized on Fig. 21. These
submatrices allow us to express the inversion as the block matrix inversion in from

Q−1
P =

[
AP BP
B>P DP

]−1

=

[
A−1
P + A−1

P BPZ
−1
P B>P A

−1
P −A−1

P BPZ
−1
P

−Z−1
P B>P A

−1
P Z−1

P

]
(158)

where ZP matrix is the symmetric Schur complement matrix of the block AP

Z−1
P = (DP − B>P A

−1
P BP)

−1 . (159)

Note that the symmetric block diagonal matrix AP ∈ R3M×3M is composed of R3×3

blocks on the diagonal, which allows for parallel inversion of these blocks. Each
R3×3 block is related to one 3D points. Much smaller matrix ZP ∈ R(K−3M)×(K−3M)

is related to camera parameters. The submatrix of Q−1
P related to the points is

calculated as
A−1
P + YPZ

−1
P Y>P where YP = A−1

P BP . (160)

Because of the symmetric matrix Σθ,θ, we can calculate only the upper (or lower)
triangle.

The uncertainty propagation using the nullspace bounding is feasible for up to a
few thousand cameras in the reconstruction. If the reconstruction is larger, the
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inversion of the Schur complement matrix ZP appears to be numerically unstable.
Let us assume a partial reconstruction with Fisher information matrix Mi. If a new
camera is registered, we can extend Mi about zeros for new camera parameters and
new registered observations u∆, i.e.

M̄i =

[
Mi 0

0 0

]
. (161)

The size of zero matrices depends on the camera dimension dim(Pl) and the number
of registered observations. Next we can add the Fisher information matrix M∆

realized by new camera
Mi+1 = M̄i + M∆ . (162)

This expression leads to an update of the Schur complement matrix in form

Zi+1 = Zi + Z∆ . (163)

Let us simplify the derivation by not assuming the scaling as in eq. (154) and
permutation in eq. (157). The Woodbury matrix identity show that adding a new
camera

Z−1
i+1 = (Zi + J>u∆

Σu∆,u∆
Ju∆

)−1 (164)

= Z−1
i − Z−1

i J>u∆
(Σu∆,u∆

+ Ju∆
ZiJ
>
u∆

)−1Ju∆
Z−1
i (165)

= ΣP,P − W∆ (166)

leads to the subtraction of positive semi-definite matrix W∆ from the original co-
variance matrix of cameras, called here ΣP,P for brevity. In other words, the
uncertainty of the reconstruction decrease with an increasing number of cameras.
Suppose we have ΣP,P large enough (i.e., more than approximately 150 cameras)
the change of W∆ becomes neglectable, i.e., we can approximate the uncertainty
propagation by using reasonably large sub-scenes.

8.3 Evaluation

We conduct two sets of experiments to assess the quality of our uncertainty propa-
gation methods. The first set of experiments involves using the chi2 test to evaluate
the propagation of uncertainty for minimal solvers. The second set of experiments
focuses on testing the propagation of uncertainty from keypoints to the sparse
reconstruction. We compare the performance of six algorithms on nine scenes.
To assess the accuracy of the propagated covariance matrices, we compare them
with the ground truth using a metric based on the relative difference between the
matrices related to camera parameters. Additionally, we test the speed of each
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algorithm, examine the change in the covariance matrix when a new camera is
registered, and investigate the effect of assuming a smaller scene on the accuracy
of the covariance matrix. We present the results in various figures, including visu-
alizations of standard ellipses and comparisons of the errors of covariance matrices
of individual methods on small scenes with respect to the ground truth.

8.3.1 Uncertainty of minimal problems

To verify the accuracy and numerical stability of the provided implementations for
uncertainty propagation in minimal solvers, we used a small covariance matrix of
input measurements. We propagated this covariance matrix through the solvers in
two ways: (1) using uncertainty propagation to obtain the theoretical covariance
matrix, and (2) using simulation to obtain the empirical covariance matrix.

In the simulation, we repeatedly distorted the input measurements according
to the input covariance and ran the minimal solver to obtain outputs. These
outputs were then used to estimate the empirical covariance matrix. To assess the
quality of both the theoretical and empirical covariance matrices after projection
onto the orthonormal basis of the column space of Σ̄T (i.e. the theoretical one ΣT,
and empirical one ΣE), we use the chi2 test statistic

λt = k

(
log

(
det(ΣT)

det(ΣE)

)
− p+ tr(ΣEΣ

−1
T )

)
(167)

where k is the number of samples used to estimate ΣE, and p is the minimum
number of output parameters, i.e. rank(ΣE). The hypothesis that ΣT, and ΣE follow
the same distribution can be rejected if λt is outside the bounds defined by the
cumulative distribution function of the chi2 distribution with (p+ p2)/2 degrees of
freedom and chosen significance level. We use a significance level of αmin = 0.999.
Figure 22 shows the mean and standard deviation of λt estimated from 500 trials
of the statistical test, where each trial estimated the empirical covariance matrix
using p = 100 samples and σin = 10−13 variance of input measurements.

8.3.2 Uncertainty of reconstruction

In this section, we compare the methods developed in the theoretical part with two
previous approaches: Kanatani [75] and Lhuillier [58]. In addition, we apply MP
inversion (as in [75]) in several environments with different numerical precision.
The comparison of the mentioned methods is from our paper [99]. The Taylor
expansion approach was published in [97], and the ground truth datasets were
composed in the scope of [98]. A list of the compared methods can be found in
Table 2. The comparison of a few preceding approaches, such as fixing one camera
and scale or fixing three points to fix the gauge of the covariance matrix, can be
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Figure 22: The figure shows the results of the statistical test evaluating the accu-
racy of covariance propagation methods derived for minimal solvers. The markers
represent the bounds of the test statistic λt with the significance level αmin = 0.999.
Each test was evaluated 500 times, resulting in the mean, standard deviation, and
percentage of passed tests displayed in brackets. The small percentage of failed
tests suggests that the linearization of the constraints is susceptible to numerical
errors. For each trial, we assumed p = 100 samples and σin = 10−13 variance of
input measurements.

found in our papers [97, 98].

We begin by describing the dataset used to evaluate the compared methods. We
assume the uncertainty propagation method described by Kanatani [75] as the
ground truth for our evaluation. This method involves the MP inversion of ma-
trix M and has limitations due to the numerical instability, critical even for small
reconstructions, and computation speed. We observed that because of this numer-
ical instability, MP inversion often assumes more degrees of freedom than seven.
If the number of degrees of freedom is fixed to seven, it can lead to much larger
uncertainty in some parameters than expected. This occurs when we apply the
SVD decomposition to invert M, and the smallest singular values are either as-
sumed as zeros or inverted. As a result, the most uncertain parameters are treated
as either the most accurate or much larger than expected. To avoid these prob-
lems, we calculated the ground truth using Maple with 100 significant digits. We
verified this result using a unit test, which showed that the covariance matrices
calculated with half the number of significant digits led to similar results up to
the rounding error. However, this calculation is computationally demanding and
can only be used for small reconstructions, such as those with L < 70, M < 250,
and N < 6000. We estimated the ground truth covariance matrices for five small
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# Algorithm

1 M+ using Maple (K. Kanatani [75])
2 M+ using Ceres (K. Kanatani [75])
3 M+ using Matlab (K. Kanatani [75])
4 Z+ with correction term (M. Lhuillier [58])
5 TE inversion of Z (M. Polic [97])
6 Nullspace bounding of M (M. Polic [99])

Table 2: Uncertainty propagation methods compared in this section. Method (1)
is evaluated in Maple using 100 significant digits. Method (1) is only evaluated on
datasets (1)-(4) and is assumed to be the ground truth.

# Dataset name L M N

1 Cube 6 15 60
2 Toy 10 60 200
3 Flat 30 100 1k
4 Daliborka 64 200 5.2k

Table 3: Summary of datasets with
known ground truth. Datasets (1),
(3) are synthetic, (2) is reconstructed
by COLMAP, and (4) is recon-
structed by Bundler.

# Dataset name L M N

5 Marianska 118 81k 249k
6 Dolnoslaskie 360 530k 226k
7 Tower of London 530 66k 509k
8 Notre Dame 715 127k 748k
9 Seychelles 1.4k 407k 2.1M

Table 4: Summary of the datasets with-
out known ground truth. Dataset (9) is
reconstructed by COLMAP and (5)-(8) by
Bundler.

scenes, including two synthetic scenes (Cube and Flat), and three datasets recon-
structed using publicly available pipelines (COLMAP [8] and Bundler [13]) using
a limited number of cameras and reduced number of registered observations and
3D points. Two real datasets were used for evaluation, and two were used for visu-
alizing the uncertainties. The rest of the listed datasets were built using publicly
available pipelines without any restrictions on the number of cameras, points, or
observations registered. See Tab.3 and4 for more details.

The covariance matrices contain a large range of values because of different units
of individual parameters. For example, the mean-variance of focal length is 2 ×
103 while the mean-variance of all Euler vector variables is 8 × 10−3 for ground
truth datasets. To compare the algorithms concerning the ground truth, we need
to specify a suitable metric. To simplify our metric, we compare the camera
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1 2 3 4

10-2

10-1

100

101
2) M+ (Kanatani, CERES)
3) M+ (Kanatani, MATLAB)
4) Z+ with correction term (Lhuillier)
5) TE inversion of Z (Polic)
6) Nullspace bounding of M (Polic)

The mean rela�ve error of camera covariance matrices

Figure 23: The mean error E(εΣPl
) for algorithms (2)-(6) from Tab. 2 using the

datasets with known ground truth covariance matrices, Tab. 3.

parameters only, i.e., calculate the magnitude of individual parameters

QPP =
1

L

L∑
l=1

√
PlP
>
l (168)

and use it to normalize the differences between covariance matrices of individual
cameras, i.e.

εΣPl
=

1

64

8∑
i=1

8∑
j=1


(√

abs(Σ̃P̂lP̂l
− Σ̂P̂lP̂l

)
)
i,j

(QPP)i,j

 . (169)

The Σ̃P̂lP̂l
realize the ground truth covariance matrix, and Σ̂P̂lP̂l

the estimated one.
The comparison of mean error εΣPl

of cameras l = 1, . . . , L in the datasets (1)-(4)
is in the Fig. 23.

Another important metric to consider is the speed of the algorithm. We per-
formed the experiments on a single computer with a 2.6GHz Intel Core i7-6700HQ
and 32GB of RAM. Some of the implementations are not practical due to their
long run-time or large memory requirements. For example, calculating the ground
truth covariance matrix for a small dataset (4) took approximately 22 hours. The
same algorithm implemented in Ceres [47] (using 15 significant digits and the
Eigen library [144]) took 25.9 minutes, while the Matlab implementation (using
15 significant digits and LAPACK library [145]) took 0.45 seconds. This example
shows that the ground truth cannot be found for datasets (5)-(9). Additionally,
algorithms (2) and (3) cannot be used on the same datasets due to the memory
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3) M+ (Kanatani, MATLAB)
4) Z+ with correction term (Lhuillier)
5) TE inversion of Z (Polic)
6) Nullspace bounding of M (Polic)

2) M+ (Kanatani, CERES)
3) M+ (Kanatani, MATLAB)
4) Z+ with correction term (Lhuillier)
5) TE inversion of Z (Polic)
6) Nullspace bounding of M (Polic)
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Figure 24: Comparison of the run time
of individual algorithms on synthetic
and real datasets. Algorithms (2) and
(3) were not evaluated on datasets (5)-
(9) because of memory requirements.

Figure 25: The relative error of cam-
era covariance matrices estimated on
datasets (5)-(9) using one hundred
neighboring views for the repeatedly
randomly chosen sub-reconstruction.

requirements for storing M+. For instance, dataset (5) would require 470GB to cal-
culate the covariance matrix for Σθθ. The comparison of the run-time of individual
algorithms is shown in Fig. 24.

In the theoretical section, we showed that extending a sub-reconstruction decreases
the uncertainty. Therefore, the uncertainty of a sub-reconstruction is also an up-
per bound of the reconstruction uncertainty. Figure 25 shows the relative distance
between the covariance matrix calculated from all the cameras and that calculated
from 100 neighbouring cameras only. We used algorithm (6) and a randomly cho-
sen camera for the propagation. The figure indicates that the relative error of the
camera covariance matrix is small even when using a small set of neighbouring
views to estimate it. The decreasing trend of the relative and absolute error of the
estimated covariance matrices with increasing size of the sub-reconstruction, i.e.,
assuming 5, 10, 20, 40, 80, 160, 320 cameras, is shown in Figures 26 and 27.

To gain better insight into the behavior of the different methods, we conducted a
final experiment to visualize the estimated and ground truth covariance matrices
of camera centers as standard ellipses. As an example, we used the Buddha dataset
consisting of 67 images, 1553 points, and 4263 image observations. The number
of cameras and points was reduced to 67 and 8, respectively, to allow for the
calculation of ground truth covariance matrices. Two example images from the
Buddha dataset are shown in Fig. 28. To visualize the relative errors in camera
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Figure 26: Mean of the relative error
log10 E(εΣPl

) for increasing the size of
the sub-reconstruction utilized to esti-
mate single camera uncertainty matrix.

Figure 27: The median of the absolute
error log10 ||Σ̃P̂lP̂l

− Σ̂P̂lP̂l
||
F

for increas-
ing size of the sub-reconstruction uti-
lized to estimate single camera uncer-
tainty matrix.

covariance, we generated a histogram with corresponding colors (see Fig. 29). The
main visualization is shown in Fig. 30 and 31, which utilize the color coding of the
errors from the histogram 29. The standard ellipses indicate the standard deviation
of the camera center position. Additional visualizations of datasets (1)-(4) and the
Cereal dataset can be found in [98, 99].
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(a) 3D reconstruction (b) One of input images

Figure 28: The Buddha dataset [146] contains 67 images, 1553 points and 4263
image observations.
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Figure 29: The distribution of relative camera covariance matrices errors with
corresponding color coding utilized in the visualization of standard ellipsoids, in
Fig. 30, and 31.
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(a) GT covariance ellipsoids (alg. (1))
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(b) 2) M+ (Kanatani, CERES)
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(c) 3) M+ (Kanatani, Matlab)
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(d) 4) Z+ with correction term (Lhuillier)
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(e) 5) TE inversion of Z (Polic)
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(f) 6) Nullspace bounding of M (Polic)

Figure 30: The visualization of the camera centers uncertainty on sub-
reconstruction with all 67 cameras and 150 points in 3D for the Buddha dataset.
Each ellipsoid shows the most unconstrained directions of the camera position and
green to red color mapping the covariance matrix error. The blue dots realize the
points in 3D.
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Figure 31: The visualization of the camera centers uncertainty on sub-
reconstruction with 8 cameras and 50 points in 3D for the Buddha dataset. Each
ellipsoid shows the most unconstrained directions of the camera position and green
to red color mapping the covariance matrix error. The blue dots realize the points
in 3D.
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9 Applications of the uncertainty modelling

The first step required for uncertainty propagation is always the estimation of
model parameters, such as the essential or fundamental matrix. Without esti-
mated model parameters, we do not have any linearization point for expressing
the derivative of geometric constraints. This is a significant limitation of uncer-
tainty applications in practice. However, we can use uncertainty to avoid subse-
quent extensive processing and improve the accuracy of the model estimate. For
example, we may skip the verification of the fundamental matrix on all correspon-
dences. Another example is skipping the reconstruction optimization when using
an unsuitable mathematical model of the projection function. Using a suitable
camera model can lead to an order of magnitude faster convergence of the bundle
adjustment. This section shows how to use the information about the uncertainty
of estimated parameters to make SfM fast, accurate, and robust.

9.1 Uncertainty-based robust model estimator

The uncertainty of the inputs can be naturally utilized by employing Maximum
Likelihood (ML) estimation, which minimizes the influence of input measurement
noise on the estimated parameters. A single iteration of ML estimation can re-
duce the error of algebraic solutions below 10%-40% of the parameters’ standard
deviations [147, 148]. We show that the output covariance matrix can be used to
filter out very uncertain or too accurate algebraic solutions. The uncertainty of
correctly estimated parameters follow a reference distribution, where too uncertain
solutions are not usable in practice. At the same time, too accurate ones usually
correspond to perfectly fitted outliers (the solution fits only the data used at the
input of a minimal solver). The magnitude of the uncertainty can be described by
several statistics. The most accurate one is the condition number, which expresses
the squared ratio of the most and least uncertain axis of the standard ellipse. A
weaker, much more computationally efficient statistic is tr(Σxixi), which expresses
the average variance of the i-th estimated model, expressed by vector xi. This
can still identify very uncertain or too accurate solutions and can be employed as
the initialization of the probability of having the correct model in the preemptive
model verification by the Sequential Probability Ratio Test (SPRT) [104,149].

9.2 Camera model selection

The utilization of reconstruction uncertainty for camera model selection is pre-
sented in [15]. SfM pipelines have numerous hyperparameters that are set by
users, often without detailed knowledge of the underlying algorithms and their
dependence on input data. As all minimal solvers and bundle adjustments assume
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Figure 32: COLMAP reconstructed cameras (red) and 3D points (black) using
eight different radial distortion models. The best camera model selected using the
LACS method (framed in red) gives the most planar result for 3D points of a flat
wall (using the terrains rig dataset from [151]).

a single set of geometrical constraints, i.e., one camera model, it is crucial to select
the appropriate one. A model that is too simple may filter out inliers, while a
model that is too complex may lead to over-fitting and result in degeneracies as
shown in Albl [150]. An example of the reconstruction of a flat wall using different
camera models is shown in Fig. 32. The ultimate goal of camera model selection is
to choose a model that registers all cameras, has the largest number of inliers, and
has the smallest reprojection error. However, as this is not feasible in practice, we
need a criterion that expresses how well a reconstruction (with a selected camera
model) fits the observed feature points. To avoid calculating a large-scale recon-
struction using all camera models, we propose a method for choosing a camera
model for a small subset of input images. Specifically, we suggest reconstructing
a small subset of images using all camera models and selecting the most suitable
model for large-scale reconstruction.

Notation for camera models and projection functions is described in Sec. 5.5,
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and the basics of Information Criterion (IC) are introduced in Sec. 5.4 and Sec. 3.3.
However, existing ICs do not perform well on this task. Therefore, we propose a
new Accuracy-based Criterion (AC) that selects the model leading to the most ac-
curate reconstruction. Note that we use the abbreviation “AC” for Accuracy-based
Criterion instead of “Affine Correspondences” in this section, to stay consistent
with both previous publications [15, 17].

The idea behind Accuracy-based Camera Selection (ACS) approach is that a
well-fitting camera model will result in as many feature points as possible, with
each observation contributing to the Fisher information matrix and decreasing the
covariance matrix of estimated parameters. In an over-parameterized case, the
number of feature points does not increase significantly as more camera param-
eters are employed, leading to larger uncertainty of the common parameters for
all sub-reconstructions (assuming different camera models to calculate the recon-
structions) when proper selection of the gauge of the covariance matrix is utilized.

9.2.1 Accuracy-based criterion (AC)

We assume that there are n estimated reconstructions θ̂
(i)

from L images, calcu-
lated using different camera models from the set M = M1, . . . ,Mn, as input for
the ACS. The AC (part of ACS) estimates the “goodness” of the fit for one camera
model Mi in a way that is comparable with the other camera models inM. Let us
redefine the parameters of the reconstruction (e.g., θ(i), P (i), X(i), etc.) to corre-
spond to the reconstruction from the subset of cameras directly. This simplifies the
following notation, and if required, we call the whole reconstruction with a tilde

(e.g., θ̃
(i)

, P̃
(i)

, X̃
(i)

, etc.). Using the sub-reconstruction θ(i) as the linearization
point, the accuracy of observations Wuu = Σ−1

uu can be propagated into the recon-
struction parameters according to Sec. 8.2. In practice, each reconstruction θ(i) is
in a different coordinate system with a different gauge of the covariance matrix.
To obtain comparable covariance matrices, we need to:

1. Fix the gauge of the coordinate systems (K-transformation in Sec. 5.3).

2. Fix the gauge of the information matrix (S-transformation in Sec. 5.3).

3. Define the metric (i.e., AC) that expresses how well θ(i) (i.e., Mi) fits the
detected feature points.

One of the challenges for IC is a different number of reconstruction parameters
K(i) for different reprojection error thresholds δ, different camera model Mi, and
different parameters setup. In the case of AC, we select a common part of the
reconstruction further used to compare its uncertainty. Let us denote the common
part of the reconstruction θA and the remaining parameters θ

(i)
B = {θ(i) \θA}.
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Note that we assume that these parts are not overlapping and form the recon-
struction, i.e., θ(i) = {θ(i)

A ,θ
(i)
B }. To fix the gauge of the coordinate system, we

chose one reference reconstruction θ(r), i.e., one reference camera model Mr ∈M.
Next, all the reconstructions are transformed (step number (1)) to this reference
coordinate system such that the similarity transformation minimizes the distances
of the camera centers and angles between the optical axes w.r.t. the camera poses
in the reference reconstruction. To simplify the following text, let us assume that
all reconstructions θ(i), ∀i ∈ {1, . . . , n} are already aligned to the reference co-
ordinate system. Step number (2) is to fix the gauge of the coordinate system
following eq. (26). The difference is that we assume two sets of parameters, i.e.,

θ(i) = {θ(i)
A ,θ

(i)
B }. Therefore the Jacobian is also composed of J

(i)
A , J

(i)
B where J

(i)
A

denotes the Jacobian of p(i) w.r.t. θA and J
(i)
B denotes the Jacobian of p(i) w.r.t.

θB. Then, we can write the propagation as

W
(i)
θθ =

W(i)
AA

(
W

(i)
AB

)T
W

(i)
AB W

(i)
BB

 =


(
J

(i)
A

)T(
J

(i)
B

)T
 Wuu [J(i)

A J
(i)
B

]
, (170)

where W
(i)
θθ is a symmetric positive semi-definite matrix with 7 degrees of freedom,

and W
(i)
AA, W

(i)
BB, W

(i)
AB are blocks of W

(i)
θθ corresponding to θA and θ

(i)
B . Note that

θA is independent of Mi while θ
(i)
B consist of the remaining parameters which

size may be different. To have a comparable information matrix (i.e., we do not
have to calculate the MP inversion leading to numerical instabilities), we define
such an S-transformation matrix S(i) that ensures that common parameters θA are
independent of θ

(i)
B , i.e.[

W
(i)
A 0

0 W
(i)
B

]
= S(i)

W(i)
AA

(
W

(i)
AB

)T
W

(i)
AB W

(i)
BB

(S(i)
)T
, (171)

where the matrix S(i) can be written as

S(i) =

[
EB −

(
W

(i)
AB

)T (
W

(i)
BB

)−1

0A EB

]
. (172)

The submatrix W
(i)
A of the information matrix has the same dimension KA =

dim(W
(i)
A ) ∀i ∈ {1, . . . , n}, i.e., for all camera models Mi. The matrix EB is unit

matrix of size dim(θ
(i)
B ), and 0A is zero matrix of size dim(θA). Moreover, this

block can be expressed from the Schur complement of a block matrix

W
(i)
A = W

(i)
AA −

(
W

(i)
AB

)T (
W

(i)
BB

)−1

W
(i)
AB , (173)
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and express the accuracy of common parameters θA with fixed gauge of the infor-
mation matrix. The MP inversion of W

(i)
A realize the covariance matrix

Σ
(i)
θAθA

=
(
W

(i)
A

)+

(174)

describing the uncertainty of common parameters. For example, the largest eigen-
value λmax(Σ

(i)
θAθA

) equal the squared magnitude of the main diagonal of the standard
ellipse, i.e., the magnitude of the most uncertain parameter. As the computation
of MP inversion is computationally demanding, we rather analyze the eigenvalues
of the information matrix W

(i)
A . Suppose we assume the eigenvalues λA = eig(W

(i)
A )

in the ascending order. In that case, the first seven eigenvalues will equal zeros as
so as the seven smallest eigenvalues of the related covariance matrix. The other
eigenvalues are the inversion of the eigenvalues of the covariance matrix, i.e.(

eig(Σ
(i)
θAθA

)
)

(K
(i)
A −j)

=
1

λA,(8+j)

∀j ∈ {0, . . . , K(i)
A − 8} . (175)

Therefore, the variance of the most uncertain parameter is realized 1/λA,8, and
we can use it as the IC. We empirically found that a better indicator of the scene
accuracy is the trace

AC = tr(W
(i)
A ) (176)

corresponding to the sum of eigenvalues. As the eigenvalues of the information
matrix are inverted variances, their sum is large if all the common parameters are
accurate. Moreover, the trace can be calculated efficiently without the eigenvalue
decomposition.

9.2.2 Camera model selection method (ACS)

Accuracy-based Camera model Selection (ACS) selects the camera model that
yields the highest score according to the AC criterion. We describe the observa-
tions by their covariance matrix Σuu, select a subset of 5 ≤ L ≤ 15 cameras, and
calculate the reconstruction parameters θ(i) for each camera model Mi. The num-
ber of cameras L required for a reliable estimate of the camera model was found
empirically. Increasing the number of cameras improves the estimated 3D model’s
accuracy and computational time. Our approach is to run all the reconstructions
in parallel for all the camera models and wait until some register L cameras. This
time is denoted as T1. If the camera model fits the observations well, the slowest
part of the reconstruction process, the bundle adjustment, is much faster than for
a wrong camera model. Moreover, the cameras are registered in approximately
the same order for suitable camera models. Therefore, our heuristic is to start all
the reconstructions in parallel and stop all the SfM instances that are not able to
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register L cameras in Td = γ T1. Here, γ is an empirically set factor that deter-
mines how many times longer to wait before stopping the SfM executions. All the
sub-reconstructions that contain L cameras are used to find the common set of
parameters. We focused on the camera parameters only, as selecting common 3D
points is computationally demanding. The camera parameters common to all the
sub-reconstructions are denoted by θA ⊆ θ(i),∀i. The ACS method is summarized
in Algorithm 1.

9.2.3 Learned threshold (LACS)

The ACS selects the most accurate reconstruction and related camera model for
a fixed reprojection threshold δ. Therefore, different reprojection thresholds may
lead to different camera models being selected. However, the reprojection error
threshold can be easily adjusted. For instance, assuming δmax = 2 px, we can filter
out correspondences with reprojection error larger than 0.5, 1, 1.5 px and update
the reconstructions by bundle adjustment. Let us assume a number of thresholds
nthr. As the AC is fast to calculate, we obtain the AC for each camera model
(up to n) and each reprojection threshold, i.e., a matrix Rn×nthr where each un-
known AC criterion is replaced by zero. These values are further sent to a shallow
neural network consisting of four hidden fully connected layers (with dimensions:
d0 = n × nthr, d1,2 = (n × nthr)/2, d3,4 = n), each followed by leaky ReLU acti-
vation [152]. This neural network is trained on synthetically created projections
with additional positional noise using a known camera model and real scenes. The
process is described in the empirical evaluation. The LACS benefits from multiple
reprojection thresholds and leads to a superior estimate of the camera model for
input images.
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Input: A finite set of images I = {I1, I2, . . . , IL̃}; reprojection threshold δ;
the number of registered cameras in the sub-reconstruction L; time
factor γ; a finite set of camera models M = {M1,M2, . . . ,Mn}

Output: the selected camera model Mb; calibration parameters for the
output camera model θ̂b

Td ←∞, Ssub ← ø, SAC ← ø
// run in parallel until Td elapses

for i← 1 to n do

[θ̂
(i)

, T1] ← SfM(I, Mi, δ, L)
if Td =∞ then

Td ← γ T1

end

Ssub ← {Ssub, θ̂
(i)
}

end

// finished sub-reconstructions Ssub

SA ← find common parameters(Ssub)

for θ̂
(i)
∈ Ssub do

θ̄ ←align coordinates( θ̂
(i)

, Ssub,1 )
[θA,θB]← split parameters( θ̄, SA )
[JA, JB]← get derivatives( Mi, θA, θB )
[WAA, WAB, WBB]← get inform mat( [JA, JB] )

W
(i)
A ← get schur complement( [WAA, WAB, WBB] )

SAC ← {SAC, tr(W
(i)
A )}

end
Mb ← select model( SAC, M )

Algorithm 1: The ACS method runs the SfM algorithm in parallel for each
camera model Mi until the time limit Td is exceeded. The set Ssub contains
all the reconstructions that successfully registered L images. The function

align coordinates( θ̂
(i)

, Ssub,1 ) fix the gauge of the coordinate system by align-

ing the camera poses of θ̂
(i)

cameras to the cameras of the Ssub,1 reconstruction.

The function split parameters( θ̄, SA ) split θ̂
(i)

into θ(i) = {θ(i)
A ,θ

(i)
B } where

θ
(i)
A realize the set of common camera parameters for all the reconstructions in

Ssub. The function get derivatives(Mi,θ̂A,θ̂B) computes partial derivatives for a
given model Mi. Next, the function get inform mat( [JA, JB] ) follow eq. (170).
The Schur complement of a block matrix, i.e. the function get schur complement(
[WAA, WAB, WBB] ) is calculated according eq. (173), and the function select model(
SAC, M ) pick up the camera model Mi with the largest AC.
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9.3 Evaluation

This section presents the experimental evaluation of two methods based on un-
certainty propagation in the scope of SfM. The first method, uncertainty-based
preemptive verification utilize the probability of having a high inlier sample of
the minimal problem solution, estimated from the uncertatinty of the solution, to
speed up the Sequential Probability Ratio Test (SPRT). Therefore, we demonstrate
the speed improvement achieved by employing this method.

The second method is the Accuracy-based Camera Selection (ACS) and its
extension, the Learning-based ACS (LACS). The ACS method selects the most
accurate camera model for a given set of input images by calculating the recon-
struction accuracy using the Accuracy-based Criterion (AC). We test the ACS
method on polynomial degree estimation to check if it is competitive with the
current state-of-the-art Information Criterion (IC). Then, we generate synthetic
reconstructions with known camera models and test ACS and LACS compared to
IC. We also present the mean success ratios of the ACS and LACS classifiers with
an increasing number of registered cameras. Next, we evaluate the performance
of ACS and LACS methods on synthetic sub-reconstructions and plot confusion
matrices, i.e., a statistic of selected camera models for the reconstruction with a
known ground truth camera model. We also visualize the AC evaluation for itera-
tively adding new cameras into the partial reconstruction. Finally, the outputs of
real datasets, including the number of reconstructed cameras, points, observations,
runtime, reprojection error, distance to ground truth (if available), and selected
models by LACS, are shown.

In summary, this evaluation demonstrates the effectiveness of uncertainty prop-
agation methods in improving the accuracy and speed of SfM pipelines. We show
that the proposed methods can lead to automatic camera model selection and
improve the overall quality of the reconstructions.

9.3.1 Uncertainty-based preemptive verification

Experimental results related to uncertainty modeling and utilization in preemp-
tive verification are presented in [17]. The main idea is to train the distribu-
tion of tr(Σxixi) of estimated models, leading to more than 95% of inliers. In
other words, we stored the trace of the covariance matrix tr(Σxixi) and inlier ra-
tio for all the models generated in the RANSAC loop, for all the image pairs
in all the datasets assumed in [17]. When running the RANSAC, we 1) esti-
mate the model and its uncertainty, 2) calculate the likelihood of having a sample
with a high inlier ratio, and 3) initialize the SPRT test by this likelihood of the
model to be verified. The empirical results showed that the point solvers fol-
low approximately the exponential distribution while the affine ones follow the
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log-normal distribution. The exponential distribution is defined by the rate pa-
rameter λ̂PC = (n0.95 − 2)/

∑n0.95

i=1 (tr(Σxixi)), where n0.95 denotes the number of
models with an inlier ratio > 0.95. The affine correspondences are modeled by
a log-normal distribution with the mean µAC = 1/n0.95

∑n0.95

i=1 log10(tr(Σxixi)) and
variance σ2

AC = 1/(n0.95 − 1)
∑n0.95

i=1 (log10(tr(Σxixi)) − µAC)2). Fig. 33 shows the
fitted distributions for PC and AC inlier ratios stored for homography and fun-
damental matrix estimation. These apriori-determined distributions can also be
updated online during the first few cycles of RANSAC, improving the accuracy
of the likelihood estimate of a high inlier ratio sample. Note that the uncertainty
propagation for the essential matrix is computationally expensive and, therefore,
not beneficial for speeding up the preemptive verification step. Thus, we skipped
the uncertainty evaluation for the essential matrix. Further, we simplify the high
inlier ratio modeling by assuming that all distributions are log-normal.

We evaluate the performance of proposed methods on both epipolar geometry
and homography estimation tasks. The evaluation is conducted on the benchmark,
introduced by Bian [153], using the image pairs from TUM [154], KITTI [155], and
Tanks and Temples [156] datasets for epipolar geometry estimation, and on the
scenes of the HPatches dataset [157] for homography estimation. The RANSAC’s
inlier-outlier threshold for the epipolar geometry estimation task is set to 1 px
(F) and 5 px (H). Our primary focus is on the execution time of RANSAC for
a given reprojection error (we refer the readers to [17], for more details about
utilized reprojection error metric). To speed up the RANSAC process, we in-
corporate the likelihood of having a high inlier ratio, estimated from the apriori
determined uncertainty distribution of the models with > 95% inliers, into the
SPRT test [104, 149]. This step avoids expensive validation of models that are
likely to be worse than the current best model. Following experiments demon-
strate that the cumulative distribution function for homography and fundamental
matrix estimation with uncertainty check leads to the fastest robust estimation of
both tested AC minimal solvers. We also observe that compared to PCs, the ACs
lead to significant speed up when used according to the guideline in [17].

9.3.2 Camera model selection

The experimental evaluation is presented in [15]. The experiments can be divided
into three parts: 1) comparing the ACS method on the problem of polynomial
degree estimation, 2) evaluating standard IC, ACS, and LACS on synthetic recon-
structions with known camera model, and 3) evaluation of the ACS and LACS
methods on real images without known ground truth camera model.

Polynomial degree estimation. We first assess whether the ACS method pro-
duces competitive results compared to the well-known standard ICs on the problem
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(a) Homography estimation

(b) Fundamental matrix estimation

Figure 33: The inlier ratio for all estimated models H, F from all RANSAC loops
of all image pairs of all tested datasets as a function of the trace tr(Σxixi), where
xi realize the i-th model parameters. This figure shows that some estimates are
less likely to lead to a high inlier ratio.

of polynomial degree estimation. We compare 13 standard ICs as summarized in
Table 1 in [15]. Note that the standard ICs comprise the goodness of fit, realized
by the log-likelihood LIC, of having kIC parameters and the bias correction term.
The log-likelihood LIC can be further decomposed into LIC = TIC −RIC, where the
sum of squared weighted residuals is realized by RIC, and the constant term TIC,
depending on the number of observations NIC, is suppressed [54, 105–113,158]. In
our case, TIC varies for camera models and reprojection error thresholds. Thus,
we updated the definition of each IC. The description of standard ICs and the
derivation of their update are presented in [15].

To evaluate the performance of polynomial degree estimation, we generated
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(a) Homography matrices estimation
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(b) Fundamental matrices estimation

Figure 34: Evaluation of the cumulative distribution function of the execution
times (in seconds) for pre-emptive model verification strategies. We tested the
affine (AC) and point-based (PC) robust model estimation for homography and
fundamental matrix.

(a) Example of fitted polynomial deg = 3. (b) Example of fitted polynomial deg = 4.

Figure 35: The visualisation of example polynomials f̃pol that are used to com-
pare the IC with ACS method on the well-studied problem of polynomial degree
estimation.
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Figure 36: The success rate of the correctly estimated degree of the polynomial
for 13 standard information criterion methods and the AC criterion. Each method
was tested 10k times on each polynomial degree. The polynomial fitting was done
statistically optimal from 100 equally distributed samples in the interval [−5, 5].
The [solid, dashed, dotted] lines correspond to the positional noise ε̃pol of the
measurements, i.e., ε̃pol ∈ N (0, σ̃2

pol) where σ̃2
pol = [10−2, 10−3, 10−4].

10,000 polynomials ỹpol = f̃pol(x̃pol)+ε̃pol of each degree 1, 2, 3, 4 without outliers and
with different standard deviations ε̃pol ∈ N (0, σ̃2

pol) where σ̃2
pol = {10−2, 10−3, 10−4}.

Each polynomial has coefficients in the range [−1.5, , 1.5], and is evaluated in the
interval x̃pol ∈ [−5, 5] to ensure a significant part of the polynomial is observed.
The examples are shown in Fig. 35. We compare the ACS method with 13 stan-
dard ICs on these polynomials, resulting in an overall success rate of 94.1% over
120k trials, demonstrating its practicality. The success rate for individual polyno-
mial degrees is shown in Fig. 36.

Evaluation on synthetic datasets. In this experiment, we compared the perfor-
mance of standard IC, ACS, and LACS on synthetically created sub-reconstructions.
To model the reconstructions from images realistically, we utilized eight real cam-
eras consisting of low-cost web cameras, cellphones, fish-eye and DSLR cameras
calibrated by checkerboard pattern and camera models M0|0, M1|0, M2|0, M3|0,
M4|0, M1|1, M2|2, M3|3. We refer the reader to the paper [15] for the actual in-
trinsic parameters of each camera model. Next, to obtain realistic noise of the
keypoints, we estimated 4, 5M the covariance matrices of the keypoints from 454
images of the ETH3D dataset introduced in Schoeps [151] as the scaled inver-
sion of the structure tensor studied in Förstner [60]. These covariance matrices
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were randomly assigned to projections of 3D points into the cameras to generate
104 new reconstructions out of 13 ETH3D reconstructions (i.e., 2839 images and
10, 3M keypoints).

These reconstructions were split into [training, validation, evaluation] parts in
respective ratios [0.8, 0.1, 0.1] and utilized to train the LACS. The ACS outputs
for thresholds δ ∈ {0.5, 1, 1.5, 2}px, realized by a vector xi for camera model Mi,
were normalized by

fnorm(xi) =
4 (xi −min(xi))

(max(xi)−min(xi))
+ 1 . (177)

Therefore we obtain a matrix of camera models (columns) and reprojection thresh-
olds (rows) where each value corresponds to ACS output. We used the Adam [159]
optimizer with learning rate 10−4 and standard Cross Entropy Loss function. To
avoid overfitting, we trained for 4k epochs and selected the model with the lowest
validation loss.

To evaluate the success rate of camera model selection, we tested 1k synthetic
reconstructions for each camera model and each reconstruction size L ∈ {5, 10, 15}.
This resulted in 24k sub-reconstructions, each consisting of L−1 neighboring cam-
eras around one randomly selected camera in one of the 104 synthetic reconstruc-
tions. We added up to 20% of outliers to simulate real reconstruction mismatches
by systematically permuting 3D point IDs for each of the 24k sub-reconstructions.

These sub-reconstructions were employed for success rate evaluation of the ICs,
ACS, and LACS methods. The Fig. 37 show the success rate of correctly estimated
camera model on Msmall = {M0|0,M1|0,M2|0,M3|0,M4|0} camera models. Fig. 38
shows the same statistic using all the models in the dataset.

The increasing success ratios for a growing number of registered cameras in the
sub-reconstruction are in Fig. 5. We can see that the LACS method leads to a
reliable estimate of the camera model for L = 15 images in the sub-reconstruction.

Another statistic evaluated on the synthetic datasets is the confusion matrix,
which is shown in Fig. 6. This matrix presents the relative number of selected
camera models for a given ground truth camera model. If we always select the
correct camera model, the confusion matrix would equal the identity matrix.

Evaluation on real datasets. In this experiment, we evaluated the AC criterion
as well as the ACS and LACS methods on real datasets, including the ETH3D and
KITTI [160] datasets. The ETH3D datasets provide the camera poses, enabling us
to measure the positional error of the reconstructed cameras. The reconstructions
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Figure 37: Success rates of the information criteria for camera model selection.
The lines {solid, long dashed, short dashed, doted} correspond to a weighted
reprojection error threshold of {0.5, 1, 1.5, 2}px. LACS uses all these thresholds
to select the camera model.

Classifier / L 5 10 15

ACS [0.5px] 0.47 0.53 0.51
ACS [1.0px] 0.55 0.65 0.66
ACS [1.5px] 0.56 0.70 0.70
ACS [2.0px] 0.48 0.68 0.76
LACS 0.68 0.83 0.93

Table 5: The mean success ratios of the ACS and LACS classifiers w.r.t. an in-
creasing number of registered cameras L. We assumed the Msmall set of camera
models.

were generated using the COLMAP pipeline, bundle adjustment using the Ceres
solver, and derivatives of projection functions via developed USfM framework [99].
All execution time measurements were performed on a single computer with an
AMD Ryzen 7 1700X processor.

The first experiment showcases the change in AC during the registration of
the first 15 cameras by COLMAP on the terrains rig dataset from ETH3D, as
illustrated in Fig. 39. The addition of a new camera is expected to increase the
AC by providing more information and decreasing the covariance matrix, as shown
ineq. (166). However, the small decrease in AC is due to additional filtering of in-
consistent observations performed within COLMAP. The resulting reconstructions
using all the images are visualized in Fig. 32.

Tables 7 and 8 compare the reconstructions obtained by the tested camera
models on two datasets, one from ETH3D and the other from KITTI. A rectan-
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Figure 38: Success rates of the information criteria for camera model selection.
The lines {solid, long dashed, short dashed, doted} correspond to a weighted
reprojection error threshold of {0.5, 1, 1.5, 2}px. LACS uses all these thresholds
to select the camera model.

gle highlights the camera model selected by LACS, and bold text highlights the
best result achieved in each category, such as the number of registered cameras,
number of points in 3D, or weighted reprojection error. Red rows indicate sub-
reconstructions that could not be calculated in Td time. In the case of ETH3D, we
also measured the mean positional error of the estimated camera poses. We ob-
served that the execution time increases if the camera model is over-parametrized
or too restrictive. In the case of over-fitting unnecessary camera parameters, most
of the time is spent on parameter optimization in bundle adjustment. We also
observed that all 3D points are removed after the registration of a few cameras
(e.g., < 15), and the reconstruction starts from scratch. For example, unsuccessful
trials of the SfM initialization increased the reconstruction time from 175.7 sec to
1545 sec in the case of the terrains rig dataset. If the camera model is too simple,
repetitive cycles of adding, optimizing, and removing 3D points (that would be
well explained by a suitable camera model) occur. The time overhead caused by
the LACS method depends on γ. Still, it is negligible compared to the speedup
caused by the utilization of a suitable camera model on large-scale reconstructions.
Moreover, LACS builds the sub-reconstruction for all camera models, providing an
approximate camera calibration that can improve the accuracy of the large-scale
reconstruction. The visualization of the terrains rig reconstructions using all cam-
era models is in Fig. 39. The same visualization for the 2011 09 26 drive 0001
dataset from KITTI is in Fig. 40. More evaluation tables and visualization figures
can be found in Polic [15].
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ACS for δ = 2px LACS

0.84 0.13 0.01 0.01 0.01 0.96 0.02 0.02 0.00 0.00
0.10 0.72 0.12 0.04 0.02 0.00 0.95 0.05 0.00 0.00
0.04 0.19 0.63 0.09 0.06 0.00 0.10 0.90 0.00 0.00
0.00 0.01 0.03 0.81 0.14 0.00 0.00 0.00 0.98 0.02
0.08 0.02 0.04 0.04 0.83 0.00 0.00 0.02 0.06 0.92

Table 6: The confusion matrices for the ACS and LACS methods were evaluated
on synthetic sub-reconstructions. The ACS method used a threshold of δ = 2px,
while the LACS method benefited from all thresholds of reprojection errors δ ∈
0.5, 1, 1.5, 2px. The rows of the confusion matrices correspond to the ground truth
camera models, and the columns correspond to the selected camera models from
Msmall = {M0|0,M1|0,M2|0,M3|0,M4|0} using the evaluated method. If the correct
camera model is always selected, the confusion matrix would equal the identity
matrix.

Figure 39: The dependence of AC criteria on iterations for the terrains rig
dataset [151] for 1-15 registered cameras.
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M T1 Tall L̃ M̃ Ñ
√

Ω(θ̃) Q̃C

M0|0 7.0 1070.2 34 6.7 64.1 0.7 2.5
M1|0 32.0 626.8 165 17.5 210.5 0.9 7.0
M2|0 16.9 212.7 165 17.5 210.9 0.8 6.4
M3|0 17.6 175.7 165 17.3 210.2 0.7 3.1
M4|0 29.5 215.1 165 17.2 209.6 0.7 3.7
M1|1 12.0 172.3 165 17.2 209.6 0.7 3.5
M2|2 94.7 1443.8 165 17.3 210.1 0.8 3.7
M3|3 83.4 1545.0 18 4.3 27.0 0.5 0.8

Table 7: Evaluation of camera model selection on the terrains rig [151] with known
ground truth camera poses. The reprojection threshold used by COLMAP was
δ = 2px. The time T1 realizes the time required to reconstruct L = 15 cameras,
and Tall denotes the time of the overall reconstruction process. We assumed γ = 5,
i.e., Td = 35sec. The

√
Ω(θ̃) realize the weighted reprojection error, see eq. (43).

The mean distance Q̃C [cm] realizes the distance between the estimated camera
centers and GT camera centers after aligning them by Similarity transformation.

M T1 Tall L̃ M̃ Ñ
√

Ω(θ̃) Q̃C

M0|0 113.5 1323.6 114 34.4 305.4 0.8 −
M1|0 91.7 1401.3 114 52.3 424.2 0.6 −
M2|0 84.2 1407.1 114 64.7 502.7 0.6 −
M3|0 105.7 1272.2 114 66.2 504.5 0.6 −
M4|0 - 2238.4 0 0 0 − −
M1|1 206.1 1628.0 114 64.7 496.7 0.6 −
M2|2 - 431.2 12 7.6 104.8 0.4 −
M3|3 - 1543.2 0 0 0 − −

Table 8: Evaluation of camera model selection on the 2011 09 26 drive 0001
KITTI [160] without known ground truth camera poses. The reprojection thresh-
old used by COLMAP was δ = 2px. The time T1 realizes the time required to
reconstruct L = 15 cameras, and Tall denotes the time of the overall reconstruc-
tion process. We assumed γ = 5, i.e., Td = 35sec. The

√
Ω(θ̃) realize the weighted

reprojection error, see eq. (43). The mean distance Q̃C [cm] realizes the distance
between the estimated camera centers and GT camera centers after aligning them
by Similarity transformation.

103



Figure 40: The 3D reconstructions of KITTI drive 0001 dataset by individual
camera models. The camera model M3|3 failed to register more than three cameras.
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10 Conclusion

This thesis offers an extensive overview of the uncertainty usage in Structure from
Motion. The text describes key concepts such as uncertainty description, propaga-
tion, gauge specification, suitable model selection for observed data, the definition
of camera geometry constraints, and reconstruction optimization. The compari-
son of state-of-the-art approaches for estimating the uncertainty of keypoints is
covered and extended to obtain statistically consistent covariance matrices and
positional uncertainty of affine regions. Deriving the uncertainty of other feature
point parameters, such as scale and orientation, from template matching is more
complex than for keypoint covariance matrices. To address this challenge, we cre-
ated a large dataset of homographies and decomposed them to the feature point
transformations between image pairs. By calculating the difference between ref-
erence and estimated transformations, we were able to calculate the variances of
individual feature point transformations. We then propagated these uncertainties
to the uncertainties of scale and orientation of feature points. This resulted in the
first published estimate of the standard deviations of the scale and orientation of
the SIFT detector.

In the second part, we utilize the uncertainties of feature points and propose
new techniques for propagating these uncertainties. A new scheme, which employs
constraints between parameters, is presented to simplify uncertainty propagation
for minimal camera geometry problems, e.g., relative pose solvers. The method
is empirically verified and utilized to derive a library of uncertainty propagation
functions for common minimal problems. Uncertainty propagation from keypoints
to sparse reconstruction using the projection function is a challenging problem
due to the rank deficiency of the Fisher information matrix. To overcome this
challenge, a damping term is added, and the inversion of the Fisher information
matrix is expressed as the Taylor expansion at a point where the damping term
equals zero. The second developed approach bounds the Fisher information matrix
by its nullspace and allows the direct calculation of Moore-Pensore inversion as a
simple inversion of the extended matrix.

The last part presents two applications that benefit from the estimated un-
certainty. The first application speeds up robust model estimation by initializing
the Sequential Probability Ratio Test with the probability of having a large num-
ber of inliers for the estimated model. This initialization avoids an unnecessary
extensive verification for too uncertain or too accurate solutions. The second ap-
plication derives a new statistical accuracy-based criterion that realizes a metric
of the mathematical model’s suitability for given observations. This is the first
approach that works for automatic camera model selection from a general set of
images. Furthermore, an extension that benefits from multiple reprojection error
thresholds is trained and presented.
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In summary, this thesis describes the basics about uncertainty propagation, ex-
tends uncertainty estimation for keypoints and affine regions, derives new schemes
for uncertainty propagation, and shows the application of its estimate to speed up,
robustify, and build more accurate reconstructions.
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[38] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. Efficient neighbourhood
consensus networks via submanifold sparse convolutions. In European Con-
ference on Computer Vision, pages 605–621. Springer, 2020.

[39] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixé. Patch2pix: Epipolar-
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[104] Ondřej Chum and Jǐŕı Matas. Optimal randomized RANSAC. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30(8):1472–1482,
2008.

[105] Hirotugu Akaike. A new look at the statistical model identification. In
Selected Papers of Hirotugu Akaike, pages 215–222. Springer, 1974.

[106] Clifford M Hurvich and Chih-Ling Tsai. A corrected akaike information
criterion for vector autoregressive model selection. Journal of time series
analysis, 14(3):271–279, 1993.

[107] Hamparsum Bozdogan. Model selection and akaike’s information criterion
(aic): The general theory and its analytical extensions. Psychometrika,
52(3):345–370, 1987.

[108] Gideon Schwarz et al. Estimating the dimension of a model. The annals of
statistics, 6(2):461–464, 1978.

[109] Edward J Hannan and Barry G Quinn. The determination of the order of an
autoregression. Journal of the Royal Statistical Society: Series B (Method-
ological), 41(2):190–195, 1979.

[110] Jorma Rissanen. Modeling by shortest data description. Automatica,
14(5):465–471, 1978.

[111] Jorma Rissanen. Universal coding, information, prediction, and estimation.
IEEE Transactions on Information theory, 30(4):629–636, 1984.

[112] Elvezio Ronchetti. Robust model selection in regression. Technical report,
PRINCETON UNIV NJ DEPT OF STATISTICS, 1984.

[113] Jose AF Machado. Robust model selection and m-estimation. Econometric
Theory, 9(3):478–493, 1993.

[114] Patrick Bouthemy, Bertha Mayela Toledo Acosta, and Bernard Delyon. Ro-
bust model selection in 2d parametric motion estimation. Journal of Math-
ematical Imaging and Vision, pages 1–15, 2019.

[115] Kenneth P Burnham and David R Anderson. A practical information-
theoretic approach. Model selection and multimodel inference, 2nd ed.
Springer, New York, 2002.

116



[116] Sumio Watanabe. A widely applicable bayesian information criterion. Jour-
nal of Machine Learning Research, 14(Mar):867–897, 2013.

[117] Keisuke Kinoshita and L Lindenbaum. Camera model selection based on
geometric aic. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 2, pages 514–
519. IEEE, 2000.

[118] Rihab K Hamad, Baidaa Hamed, and HA Hassonny. The automatic selection
of radial distortion models. International Journal of Computer Applications,
975:8887.

[119] Vitaliy Orekhov, Besma Abidi, Chris Broaddus, and Mongi Abidi. Univer-
sal camera calibration with automatic distortion model selection. In 2007
IEEE International Conference on Image Processing, volume 6, pages VI–
397. IEEE, 2007.
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